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1. INTRODUCTION

Needless to say, it is very important to establish the standard of ship
operation in the heavy sea in order to avoid the troubles such as a
capsizing. And it has been recognized that the simulation program which is
able to estimate the ship motions under maneuvering motions is a powerful
tool for that.

Hamamoto and others!>-2>-3> made the leading works in this field, where
the simulation program is worked out combining the methods in both
maneuvrability and seakeeping practically. They  have claimed the
effectiveness of the above method by comparing the numerical results with the
experiments, but they also pointed that there still remained the problems in
estimating the hydrodynamic forces and moments relating to the ship motions
due to the incident waves.

In this paper, therefore, the authors conduct a mathematical
formulations of the hydrodynamic forces and moments under the Dboth
maneuvrable and seakeeping motions using the coordinate system of the body
axes. Then, they propose a practical method which is able to implement the
numerical calculation of the above formulas.

2. COORDINATE SYSTEM

2 0-X,X.X; is a coordinate system fixed to the space, where 0-X,X, plane
is on the still water plane and X, axis is vertically upward. And X 0-%X,X.X,
is a coordinate system fixed to the body, where x,, x, and x; axes coincide
with X,, X, and X, axes respectively when the body has no motion and x, axis
passes through G, the center of gravity of the body. The linear and
rotational motions of the body are given by fi(i=1,2,3) and Ei(i=4:5:6) res-

pectively. When we need the large rotational motions, we take Ei (i=4,5,6)
following Euler angle.

3. FORMULATION OF THE PROBLEM
We assume the fluid is incompressible and irrotational. Therefore we

have a velocity potential &(x;t) and it satisfies the Laplace equation;
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As for the body boundary condition, we have

%0 _ 8 in - 2% (2)
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where &: disturbed velocity potential, n: normal on the body toward fluid,

i = . = - f '=4,5,6
ni(1-1,2,3). X, componen?s of n, ni ni_1 xi_2 ni_2 xi_1 or i
&o: incident wave potential (3)

In Eq.(3) i-2 etc. mean that they are less than 3, so, if they are greater
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than 4, the mode numbers of 3 or 6 must be subtracted from them.
In the problems of unbounded fluid which were treated by Kirchhoff etc.

(see Lamb (1932)), we can determine the instataneous solution and introduce
the rigorous formulas of the hydrodynamic forces and moments on the body. In
our problem where the free surface exists, however, the rigorous solutions
cannot be obtained due to nonlinearity of free surface condition. But, since
we know that the effect of it is not so important through numerical examples,
we assume the following linear free surface conditions;

)20 + g ————~¢ 0 on x.=0 (4)
3
1 3 .
Thus we define the mathematical fluid domain as the region below x_=

3 0 except
for body. ‘

4. HYDRODYNAMIC FORCES AND MOMENTS

Here we assume that we can get & which satisfies the conditions of Egs.
(1), (2) and (4). Though in the usual seakeeping theory the pressures on the
body are calculated from the linearized Bernouilli's theorem, we introduce
the formulas of the hydrodynamic forces and moments on the body without
neglecting higher order terms as in the maneuvrable theory. In the problem
of unbounded fluid domain this can be done with kinematic energy of fluid
following Kirchhoff (See Lamb (1932)). But in our case with free surface we
cannot use this method. So, in this paper we will use the full Bernouilli's
theorem. '

The Bernouilli's theorem in the coordinate system fixed to the body is
shown in Lamb (1932) as follows:
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where p and p are pressure and density of fluid, respectively. The suffix
j+5 etc. must be less than 6. So, when it exceeds 6, the mode number 3 must
be subtracted from them. ‘

Now let us put

= 2 ‘: ]
i = 5 IJSH Jz 92 n, ds, (i=i,2,...,6) (6)

where S, is the wetted surface of the body below X3= 0.
(i) the cases of i=1,2,3

In Eq.(6) we apply the Gauss' integral formula to the j direction and then
partially integrate them considering irrotationality and Eq.(1). Thus we get

3
das . 7
JJSH *z, 3% 21% nJ (7)

Then substituting Eq.(2) 1nto Eq. (7), we get
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Hence, if we put the forces or moments to i-direction as Fi except for static
and Froude-Kriloff Forces, we get

= - P, = J a ds +
Fifo = IISH o n; 95 J S, ot i

206

}ds (8)




3 (&~ : 3%
¥ JJSHjél(Ej Eiiixiil+£i:£xjig)(@xi“j'@xj“i)ds‘ JJSH¢xi 22045 . (9)

Here, applying Stokes theorem to the 2nd integral terms in Eq.(9) we get
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where (ixj) is +1 and follows the law of unit vector product and c¢ is the
line of intersection between the free surface and body surface.

(ii) the cases of i=4,5,6
In the same way as in the case of (i), we get

-
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where aij is Kronecker s 3.

As for the nonlinear effect we will need a numerical investigation from
the engineering view points.

5. VELOCITY POTENTIAL

The conditions satisfied by the velocity potentials are shown in section
3. But from the engineering view point they should be modified considering
various effects such as nonlinearity and viscosity. Here the authors propose
a method to estimate them. From Eq. (2) we can write as

2= 3o (12)
i=l7i
where ¢, (i=1,2,.++,6) are due to éi and ¢_ is due to 99./9n.

First of all, as for ¢,, an approximate value is enough. Because the
effects of ¢, on large ship motions are considered to be small. So we
propose to take the values in Oy = 0 of a hemispheroid which roughly
corresponds to the ship.

Next, for @ (i=2,3,4,+,6) the strip method is used. Namely we use the
velocity potentlal of the two-dimensional problem with linearized free
surface condition and the instantaneous wettted hull surface of the ship.

207




But, since the free surface condition belongs to a transient problem, the
solutions will be expressed in terms of the impulse response. If vex> g
resultant velocity of the section in k-mode of motion (k=2: sway, k=3: heave,
k=4:roll),the velocity potential of k-mode on a hull section will be given as

a0 = VoL 4 J: r (1) Voo (t-r)dr (13)

where A, is the velocity potential for ¢ =» in k-mode and 1, is a function of
memory effect. And they are assumed to ge obtained under tﬁe hull form at
r=t. Generally V<<> can be expressed as

(k) 6 .
\'} = = .
iZp 3k (K 2,3,4) (14)
Therefore the velocity potential due to éi on the hull section will be given
as

A0, = &5 8,4 7 Jo I (o), (t-1)a, dv (15)

and oi will be given as
- —_ @ __ -
= <1 (3] -

o, si RG>+ IO T (r)si(t T)dr , (16)
where

ACL) = TCtD =

A J 2, M08 Fes () VJLaika(r)dQ . (17)

A<t>and T<!:> can be expressed in terms of the solution of frequency domain.
But they are desirable to be corrected three-dimensionally. At this time
Maruo's Interpolation-Theory (1978) is simple and effective, but some
correction might be needed for the values around ¢ = 0.

As for diffraction forces and moments, we %an use Haskind relation
extended by Wehausen (1967) for the linear part. Namely,

30~ 9200 — t 3200 — ‘
Fe7-2>/o = I S,, at n;ds = JJSH atan Pk 85 T I-de IJSH aTen Fﬂl>(t_;ig?
where F;’-l’is the diffraction forces or moments due to the linear term.
For the last terms in Eq. (10) and (11) are difficult to be calculated
unfortunately due to the differential terms of ¢.
Lastly, needless to say, the static and Froude-Kriloff forces and moments
‘should be calculated as correctly as possible and this is not so difficult.
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DISCUSSION

Newman J.N.: You mentioned a three-dimensional correction derived by Maruo, but
for horizontal modes (sway and yaw) this correction based on slender-body theory is of
higher-order, as compared to vertical modes.

Takagi & Saito: In the present study, the case of following waves is considered, in which
the frequency of encounter becomes very low and the strip theory gives infinite values of
heave added mass. Therefore some three-dimensional correction for them is needed and we
propose here to use Maruo’s interpolation theory since it gives relatively simple correction
for strip theory. And the correction is applied only to vertical modes.
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