Study of the second-order sea-keeping problem for submerged bodies
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Introduction

The present work deals with the three-dimensional second-order radiation problem for submerged
bodies : there is no incoming wave and the motion of the body is time-periodic. this includes the
non-homogeneous free-surface condition. In the first section, we introduce the problem and then, in
the second section, propose a method of solution by the “Limiting Absorption Principle”, and present
first numerical results.

1 Equations of the problem

We assume water to be an ideal and incompressible fluid and its motion to be irrotational. This
implies the existence of a velocity potential ¢, satisfying the usual equations of hydrodynamics. We
suppose that ¢ can be developped in powers of a small parameter £ which measures the amplitude of
the motion :

p=¢cp' +2p*+ 0 (53) :

We obtain the first-order problem P}, whose solution is ¢! and the second-order system of equations
P?, verified by ¢? :

(a) Agpi=0 in o,

P (b) 3%@ + gé:@‘ =Q' onz=0,
(¢) Ony'=F" on X,
(d) limd,p' =0 at z — —00,

where
Q'(z,y;t) =0,

1
Q*(z,y;t) = —2Ve' - 0, (Vsol) + 53&1 9, (024" + 90.¢"),
Fi(z,y,zt) = fi(z,y,2) et ; f' belongs to L?(Z),

and Qg is the fluid domain, ¥ is the body boundary, and 7 is the external normal. We suppose that
the body oscillates with pulsation w ; we may write :

(pl(m, Y, %5 t) = Re (@h(;p, Y, Z) e—iwt) i
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Noting v = w?/g, the first-order harmonic problem P! whose solution is ®} can be written :

(a) A®L =0 in Q,

Pt (6) 0,9L-v®L =0 on=z=0,
(c) 0,8%=f* on %,
(d) limd, 8% =0 at z — —o0.

The solution satisfying the outgoing radiation condition

0 (
lim /
=400 Jy=_ oo Cc(r)

(where C(r) is a circle of radius 7, so that the infinite vertical cylinder of section C(r) contains the
body) can be obtained by the “Limiting Absorption Principle”.

If we replace ¢! by its expression in condition (b) of the second-order transient problem, we obtain
that Q(z,y;t) = Re (Q2,(z,y) e~ %t + Q3(z,y)), and consequently :

8L,

el
B¢ w®g

2
df) dz = 0, (1)

¢? = e (9, e + 03) .

P? can be decomposed into two independent problems : the first one, denoted P# of pulsation 0 whose
solution is ®2 and the second, called P2, of pulsation 2w a solution of which is ®%,. In this paper,
we just deal with P2, because the free-surface condition of P¢ is a Neumann condition with a second
member in L! (R?), which should be easier to solve.

((a) A®2,=0 in Qo,
1
2 (b) 0,8%, —4vdi, = EQ%W on z =0,
2w
(c) 8,93, = on %,
L (d) lim 8,83, =0 at z —» —o00,

where

QL =iw ([v<1>1]2 - %@1 [02,8" - uachl])

[2=0

The system of equations (a) — (b) — (¢) — (d) does not have a unique solution. As for the first-order
problem, we will use the “Limiting Absorption Principle” to choose one of them.

2 A method of resolution for P},

As ®2, depends on ®! via condition (b), we must first obtain the solution of P!. It is a classical
problem The second-order problem P2, is more difficult because the free surface condition is non-
homogeneous and has an unbounded support. In the following, we propose a way to solve P2

2.1 Decomposition of P2,

P.D. Sclavounos (see [5]) splits the solution of a problem similar to P}, into the sum of a particular
solution ®p and an homogeneous solution ®g. ®p is harmonic in the fluid domain and satisfies the
non-homogeneous free-surface condition. He writes ®p as :

®p(x) = /body o(€) R(x,£) de,




where o(§) is the operator involved in the integral representation of the first-order potential, and
R(x,£) is the second-order Green function (see section 3 in [5]). Concerning ®p, it is harmonic in Q,
satisfies the homogeneous free-surface condition and the condition 8®g/0n = —8®p/0n on the body
boundary. He needs the second-order Green function (to calculate ® p) and to take the limit on the
body of the gradient of the integral defining ®p, to know 5. We propose a method which avoids
this. We choose the same decomposition as M. Verriére (see [6]) for the three-dimensional transient
problem of tsunamis, employed latter by O. Mechiche Alami for the case of acoustics (see [4]) and
then by A. Friis, J. Grue and E. Palm (see [2]) for the two-dimensional sea-keeping problem with a
bichromatic swell. This method introduces an auxiliary problem PZl, which consists in ignoring the
body in the fluid domain :

(a) A®ZL =0 z<0,
P22<4} (b) 6;@%3, — 4y Qgi, = ;—ng on z = 0,
(¢) limd,d% =0 at z — ~00.
We substract the solution of PZ} from the solution of P2, :
Q%w - @% = Q2(4)’
where ®22 satisfies the following equations :
(a) ADE =0 in Qo,
(b) 0,8%2 -4 d®2 =0 onz=0,
(c) 0,832 = D - 3,82, on%,
(d) limd, 922 =0 at z — —o0.

22
P 2w

To find ®%, amounts to calculating the solutions of problems P2} and P22

2.2 A resolution method for P2 and P22

To find a solution of P2, we apply the horizontal Fourier transform F on it (that is licit because we
ignore the body), and by the “Limiting Absorption Principle”, we find the solution :

U(u,v,2) = F (Q4) (w,2,2) F (Go) (w2, 2),

where Go(z,y, 2) is the Green function of the first-order problem for a pin-point source located on the
free-surface. Then, F~1(¥) is a particular solution of PZ! . In practice, to evaluate <I>2w, we just have
to calculate F (Q2%,) because F (Go)(u,v,2) is known analytlcally, and then apply F~!

Denoting r = /22 + y2, the asymptotic expansion of Q%, is :

etkr

2
Q2w

= 90)+0(5),

where g(8) is 27-periodic (see [1]). This shows that Q%, does not belong to L! (Rz) This difficulty
does not appear in [2] because they study the two-dimensional case. We split Q3. into a function
Q; which is in L' (R?), and @2 which is not. These two functions derive from the first term of the
asymptotic expansion of Q%,. F(Qi) can be computed by the Fast Fourier Transform algorithm
whereas F (Q2) is calculated by a mixing analytical and numerical methods.

We now consider P#2. The second member of the condition on the body is easy to calculate because
it amounts to differentiate a Fourier transform. We can see that P2 has the same form as P!. This
is why, using the “Limiting Absorptlon Principle” for the problem qun we find a solution verifying
the radiation condition (1). P22 can then be solved by the same way as P.
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2.3 First numerical results

We use the method in the case of a sphere of radius A/2 and whose center is located at z=3)/2, where

A is the wavelength. We show the modulus on 2 = 0 of &} (fig. 1) thanks to MELINA* code and the
one of @3, (fig. 2).

Conclusion

At the present time, we carry on the resolution of 7 (Q%,). We have to apply F~! which is not so
easy because F (Gp) contains a finite part. Then, we are able to solve the radiation problem because
the resolution of P22 is classical. We intend to find a relation between &p obtained by “Limiting
Amplitude Principle” and our solution of P2} obtained by “Limiting Absorption Principle”. To solve
the second-order see-keeping problem, we will have to solve the diffraction problem ; the method we
propose could be applied on it and the difficulty will be that the second member of the free-surface is
decreasing very slowly.
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*Finite Elements code developped in “Simulation et Modélisation des Phénoménes de Propagation” which can solve
problems governed by Partial Differential Equations in dimension 2 or 3.
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DISCUSSION
Newman, J. N.: Can your method be extended to a floating body?

Bellier, J. L. & Champy, L.: 1 think that for the second order problem concerning a floating
body, the difficulty is not in the method for solving the problem but in the equations
themselves. For the first-order problem, concerning a floating body, we can give a sense to
the equations and establish existence and uniqueness theorems. The situation is more difficult
for the second-order equations.




