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We consider wave drift damping of floating bodies such as oil-platforms and ships. Earlier
works have considered the wave forces and the drift damping which is acting on floating bodies
with a slow translatory motion, see e.g. Zhao and Faltinsen (1989), Nossen, Grue and Palm
(1991), Emmerhoff and Sclavounos (1992). The aim of the present contribution is to study
wave forces and wave drift damping acting on floating bodies with a slow rotation about the
vertical axis. The present theory accounts for the linear responses of the floating body, which
is a generalization of the contributions by Newman (1993) and Grue and Palm (1994), who
considered the diffraction problem only.

We consider the fluid flow and the linear body responses in the relative frame of reference
rotating with the slow angular velocity of the body. The Coriolis force is accounted for. The
slow angular velocity of the body is assumed to be much smaller than the wave frequency of
the incoming waves. The magnitude of the rotation angle may be arbitrary, however. The first
step is to find the linear fluid motion, the linear wave forces and the linear body responses.
Next we consider the wave drift damping due to the slow rotation, which is the ultimate goal
of the analysis.

Viscous effects are neglected, and the fluid is assumed incompressible and irrotational, potential
theory may then be applied. Furthermore we assume that the amplitude of the incoming waves
and the body motions are small compared to the size of the body. Green’s theorem is adopted
to formulate the integral equations for the diffraction and radiation problems. Applying a
perturbation method, the problem is solved to leading order in the slow angular velocity. The
numerical calculation is performed by a 3-D panel method, which is applicable to bodies of
arbitrary shape.

1 The integral equations

The fluid velocity v is described in a frame of reference (z,y, z) rotating with the angular
velocity 2 = Qk, with the z-axis being vertical upwards. We may then write

v=Vd+Vy® 4+ Qw (1)
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Here, w = V¢ — k X  represents the fluid motion when there are no waves, and ¥(? is a
time-average second order potential being proportional to the wave amplitude squared. & is
the linear potential proportional to the wave amplitude, and is written

Aig iw d iw
—¢pe ’+'C'l;(5j€ *)é;} (2)

where A and w are the amplitude and frequency of the incoming waves, respectively, and ¢p
is the diffraction potential. §;, j = 1,...,6 are the amplitude of motion in the jth mode, and
¢; are the corresponding radiation potential. The assumption that the body is slowly rotating
means that Q/w < 1. Thus, the problem has two time scales: a fast time scale proportional
to 1/w, and a slow time scale, proportional to 1/2. We now define ¢ = wf/g, and introduce
the following perturbation expansions

® = Re{

=&+ ¢t} (3)
b; = b7 + €¢; (4)
$p = 1+ &7 + ¢y (5)

In what follows we will keep terms proportional to ¢, and neglect terms proportional to Q2 Q.
In (5), ¢r = eX*-iKRcos(8-9) represents the incoming waves. Here K = w?/g is the wavenumber,
R and @ are polar coordinates (z = Rcosf,y = Rsin6), and B(t) is the angle between the
propagation direction of the incoming waves and the z-axis in the rotating frame of reference.
Ngw % = —Q and (¢;e™t) = (iwé; — Q;p)e™, the free surface condition for ¢; then reads
e’

K+, =0 at z=0 (6)

~K&8; + &85 — 285587 — 26745
+2i€thXe : vh¢g + 2§2V2X6¢2 =0 at z2z=0 (7)

Here V), denotes the horisontal gradient. The body boundary condition is

€%:

°n=n; onSp (8)

el .
}'n =-x™mi on Sp (9)
where (1,73, 73) denote the Cartesian components of the normal vector n, pointing out of the
fluid domain, (n4,7ns,76) = & X N, (M1, M3, m3) = —((n- V)w + 2k x n) and (my, mp, M) =

—((n-V)(z x w) + 2z x (k x n)). Far away from the body ¢; must behave as outgoing waves.

The diffraction problem is formulated by Grue and Palm (1994). Here we formulate the radia-
tion problem. To solve the boundary value problem, it is convenient to introduce ¢;*, ¢;* and
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¢3° so that £7¢} = €9 3595t +&3(8}* + ¢3). The potentials #;', ¢}* are particular solutions of the
B V.P., and are expressed in terms of ¢?, namely ¢}' = 242k, 3 = 2149 xy. We may then
show that the set of integral equations for ¥} = 32 + ¢® are

dmyp} 110 Jo _ 1, 0™ 01
{ il }+f53 $1G2dS = /SB(G nj+w- VG IL - 4G )ds

- /S i62(2VhXe - VAG® + G°Vixe)dS (10)
P

where the Green function G = G°+€G?, and G' = 2iG%,, and Sp, Sr denote the wetted body
surface and the free surface, respectively.

2 The wave forces

By integrating the pressure, the components F; of the linear hydrodynamic force F may be
written

Fi = Re{(A(X? + (X35 + X1))
+K °§°+5(K 56+ Kf56 + 20K £5) x€35))e™"} (11)

X are the components of the exiting force and represent the added mass and damping
coefﬁc1ents when @ = 0. Furthermore

X} =rg [ (#— 5w V($r+e))mids (12)
and .
fly =g [ ) = 5w Vemids (13)
It may be shown that f}; satisfy the relation
S =1 (14

which is a generalization of the Timman-Newman relations. An alternative to (12) is to express
X! by the ¢!3-part of the radiation potential by

XP=rpg [ (f145-Pb1n)is (15)

which is generalized far-field Haskind relations. S is the vertical cylinder with radius increas-
ing to infinity. As in Grue and Palm (1994) the second order time-average yaw moment may
be expressed as

M, —ep—— /k (2 x v)dV — p/ v/yv! RdS (16)

being proportional to the square of the amplitude. Here v/ = v + Qk x @, and V is the fluid
volume. This expression may be further developed to find the wave drift damping moment.
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3 The body responses

Finally the equation of motion for £} in the rotating frame of reference takes the form

2
(—K(gMi; + f2) + ci;)é; = A(X} + "Ingﬂ)

(K fi; — 26gM5)E5 + 2i(gMy; + (K £5).x)€5 (17)

where M;; is the body inertia matrix, and ¢;; is the matrix of hydrostatic coefficients. The
term involving M; is the Coriolis term, and Mj; = —M;;1,; when j = 1,4, Mj; = M;_, ; when
J=2,5and M3; = Mg; =0

To verify the model, the body response £} and ¢} due to a half immersed sphere moving in
incoming waves such that the center of the sphere describe a circle in the horizontal plane, are
computed when 8 = 7, and then compared to results obtained from the translatory problem

corresponding to our example. With 400 panels on the body the relative difference is about 2
% when 0.25 < Ka < 1, and a is the radius of the sphere.
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DISCUSSION

Zou, Z. J.: Higher order derivatives of velocity potential appear in the boundary conditions
and integral equations. Did you calculate these terms directly or indirectly? Could you
please give some details about this calculation?

ane, S. & Grue, J.: The integrals where the m-terms in the body boundary condition for
q)j appear are rewritten by using a variant of Stokes’ theorem. Thus the body integral in the
integral equatlon for W, only involves first order derivatives of the velocity potential ;. The
term V,2 % = ~Ys,, in the free surface integral is computed by numerical difference. We here
exploit that %4, = 0 at z = 0 leading to a robust numerical evaluation.
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