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In wave-body interactions, to capture the variability of the potential accurately, low order panel
methods often require a fine discretization of the body. Consequently, the computational effort
required to set~up and solve the system of equations is increased. In an effort to alleviate this
problem, higher order panel methods have been proposed in the past. Besides achieving better
accuracy for coarser discretizations, obtaining tangential derivatives in a higher order method
requires little additional effort and is numerically more robust.

We present here a new higher order panel method, where both the potential and geometry are
B-spline tensor product expansions, and apply it to the linear analysis of radiation/diffraction
problems in three dimensions. An earlier B-spline based approach in two dimensions for exterior
infinite fluid flows was reported in [1]. In the following we briefly outline the scheme and then
present results which validate and help evaluate its performance.

1. Outline of the scheme Let the wetted portion of the body be composed of several large
curvilinear patches. By ‘large’ we imply that some characteristic length scale of the patch can be
of the same order of magnitude as that of the body. Each patch is a parameterised surface with
its Cartesian components given by a B-spline tensor product expansion (as contructed by some
geometric modelling package). In practice, these expansions can describe a body very accurately.

On the parametric space of each patch the solution surface is modelled by proposing the potential
as a B—spline tensor product expansion, whose unknown complex coefficients are to be solved for
(henceforth, B-splines are understood to mean B-spline tensor products). The B-splines as used
in the geometry and potential representations are not necessarily the same, since their orders and
the knot vectors they are built on can be different. Implicit in the potential representation is the
fact that an expansion based on kth-order B-splines has (k — 2) degrees of continuity ensured
everywhere on the patch. Hence, with an appropriately chosen order, even higher derivatives of
the potential retain some degree of continuity everywhere on the patch. For bodies composed of
several patches, no explicit conditions are imposed on the potentials at/or across the common
boundaries of patches.

Denoting the approximate potential and normal derivative on the body by ¢ and J¢/0n and
using Green’s theorem, we define the residual, 7, for radiation problems as,

Fo= 27r¢+//r¢g—id5—//r—g%GdS

and for diffraction problems, the last term is to be replaced by —47¢@j, the incident wave potential.
Above, GG is the Green function which satisfies all the linearized boundary conditions except that
on the body. Further, for radiation problems the normal derivative is approximated by local
Taylor expansions in parametric variables between consecutive non—coincident knots.
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A Galerkin procedure is employed to obtain a complex system of equations for the unknown
complex coefficients of the potential B-spline expansion. Specifically, we minimize the residual
with respect to the each of the (potential) B-splines directly over the parametric space of their
support. Since the potential B-spline expansion over every patch is a sum of products of an
unknown coefficient and a B-spline, we have exactly as many B-splines to minimize the residual
with as unknowns. Thus, every patch provides exactly the same number of equations as the
unknowns over that patch, resulting in a square complex dense system of equations.

The matrix entries require evaluating double spatial integrals due to the Galerkin step. They
are evaluated semi-discretely, where the outer integrals are evaluated by a fixed order product
Gauss rule and the inner evaluated exactly (i.e., accurately). In practice, the outer integral
is further subdivided onto those over the space between consecutive knots of the B—spline the
residual is being minimized with and a product Gauss-Legendre rule applied to each. Thus the
Cartesian coordinates of the Gauss nodes of the outer integrals provide the field points for the
inner integrals. Onme is then required to evaluate influence coefficients and their moments over
curved surfaces. Special algorithms have been developed for handling the Rankine singularities
over curved surfaces. The near field is evaluated by an adaptive subdivision scheme, while in the
self-influence case, the singularities are analytically removed and the desingularised integrands are
expanded in a series with algebraic type terms which are integrable. A product Gauss-Legendre
rule is used to evaluate the free-surface part of the Green function over curved surfaces, with the
functional evaluations by special algorithms described in [4].

2. Results Analytic or benchmark results exist for the added mass/damping of a floating unit
hemisphere [2], the exciting force on a submerged spheroid [3] and the potential on a bottom-
mounted circular cylinder [5]. We compare these results with our computations. In each case
the bodies are represented by B-spline expansions which are practically exact. The degree of the
potential B-splines for all the cases is cubic and for radiation problems, the normal derivative
expansions are truncated homogeneously at degree 4. The outer integration is a fixed 3 X 3 prod-
uct Gauss-Legendre rule. ‘Panels’ are defined as the space between consecutive non—coincident
knots. To minimize round-off contributions to errors due to approximations in the scheme, all
computations were performed in double precision. All the errors quoted are absolute.

Making use of the symmetry, a quadrant of a floating unit hemisphere (a = 1) is modelled as
a patch. Comparing the heave/surge added mass and damping with the tabulated results in
[2], for ka < 1, agreement to all four decimals is achieved with 3 X 3 panels/quad. (6 x 6
unknowns/quad.). For 6 > ka > 1, 4 x 4 panels/quad. (7 X 7 unknowns/quad.) results in an
error of 0.01%. Fig. 1(i) compares the heave added mass/damping with results from [2]; with the
above mentioned accuracy the different discretizations are indistinguishable. The scheme is not
immune to the effects of irregular frequencies, but unlike constant panel methods, the bandwidth
is very limited even for low discretizations. Fig. 1(ii) displays more accurately the bandwidth
reduction of the polluted region with increasingly accurate solutions through finer discretizations.
Similar results have been observed for a hemisphere in surge and a truncated floating circular
cylinder in heave and surge.

Tables 2(i),(ii) are the absolute errors in the real and imaginary vertical exciting force (normalized)
on a submerged spheroid in head seas [3]. The ratio of major to minor axisisa:b=6:1, and
the depth of submergence of its center is 2b. Symmetry is made use of and the ‘panels’/unknowns
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indicated are per quadrant of the spheroid. The accuracy of the scheme is self-evident.

Numerically, the diffraction force on a bottom mounted circular cylinder is relatively easy to
obtain compared to the potential itself for short incident waves, since only the first angular
mode contributes to the force while several modes contribute significantly to the potential. For
1 < ka < 8 at least 7-19 angular modes need to be retained in the analytic potential expansion
for a 5D accuracy and perhaps reflects the difficulty of the short wave solution. For a cylinder
of unit radius (@ = 1) and depth = 1/2, we tabulate in 3(i)~(iv), the normalised (igA/w) run-
up due to incident waves, ka = 1, 2,4, 8 respectively at a few select angles. The left half of
each table compares the real part of the run—up for various discretizations, and the right half the
imaginary part. The ‘panels’ and unknowns indicated are per half-body of the cylinder. The rapid
convergence evident for long waves seems to slow down for short waves. Nevertheless. accurate
pointwise values are still possible with practical discretizations.

This work was supported by the Joint Industry Project ‘Wave effects on offshore structures’.
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Tables 2(i),(ii): Vertical exciting force on a submerged spheroid in head seas.

Absolute Error
ka Wu & 2x2 paneis | 3x3 panels | 4x4 panels [ 5x5 panels
E.-Taylor | 5x5 unkn. s | 6x6 unkn.’s | 7x7 unkn.’s | 8x8 unkn.’s
0.1} 2.0256 0.0003 0.0001 0.0000 0.0000
0.4 | 2.0466 0.0002 0.0001 0.0000 0.0000
1.0 1.9871 0.0000 0.0000 0.0000 0.0000
4.0} 0.0453 0.0045 0.0006 0.0007 0.0006
5.0 -0.1904 0.0120 0.0002 0.0000 0.0001
Absolute Error
ka Wu & 2x2 panels | 3x3 panels | x4 panels | 5x5 panels
E.-Taylor | 5x3 unin.s [ 6x6 unkn.'s | 7x7 unkn.’s | 8x8 unkn.'s
0.1] 0.0002 0.0000 0.0000 0.0000 0.0000
0.4} 00121 0.0000 0.0000 0.0000 0.0000
1.0 0.1265 0.0000 0.0000 0.0000 0.0000
4.0 01397 0.0034 0.0005 0.0005 0.0005
3.0 0.0139 0.0048 0.0001 0.0000 0.0000

Tables 3(i)-(iv): Run~up on a bottom mounted circular cylinder: ka = 1,2,4,8

; i Absolute Error Absolute Error
] Exact | 6x1 panels | 12x2 panels | 24x4 panels | Exact [ 6x1 paneis | 12x2 panels | 24x4 panels
Re | 9x4 unkn’s | 15x5 unkn’s | 27x7 unkn’s Im 9x4 unkn’s-| 15x5 unkn’s | 27x7 unkn’s
0 | 0.60696 i 0.66754 (.00002 | 0.00000 |-1.39553| 0.48192 0.00002 0.00000
45 | 0.94854 | 0.20103 0.00004 | 0.00001 |-1.31312| 0.05436 0.00001 0.00000
90 | 1.13044 | -0.21267 0.00005 0.00000 |-0.30661{ 0.15922 0.00001 0.00000
135 [ 0.26870 | 0.00069 0.00003 0.00000 0.61619 | 0.19736 0.00003 0.00000
180 | -0.35334 | 0.36767 0.00002 0.00000 * | 0.81489 | 1.15585 0.00003 0.00000
| Absolute Error Absolute Error
6 Exact | 6x1 panels | 12x2 panels | 24x4 panels | Exact | 6x1 panels | 12x2 panels | 24x4 panels
i Re 1 9x4 unkn’s [ 15x5 unkn's | 27X7 unkn’s Im 9x4 unkn's | 15x5 unkn's | 27x7 unkn's
£ 0 |-1.02073 1 2.08989 0.00003 0.00000 |-1.55315] 5.49009 0.00008 0.00001
i 45 |-0.07468 | 0.49727 0.00026 0.00001 |-1.71268 | 0.20280 0.00016 0.00002
i 90 | 1.29456 | 0.22064 0.00029 0.00001 |-0.07267 | 0.19733 0.00006 0.00000
135 { -0.01615 | 0.12901 0.00035 0.00002 0.64158 | 0.29323 0.00002 0.00000
180 | -0.59385 | 0.55099 0.00008 0.00001 |-0.42772 1 1.52793 0.00017 0.00001
| Absolute Error Absolute Error
[ Exact | 6x1 panels | 12x2 panels | 24x4 panels | Exact | 6x1 panels | 12x2 panels | 24x4 panels
Re 9x4 unkn’s | 16x5 unkn’s | 27x7 unkn’s Im 9x4 unkn’s | 15x5 unkn’s | 27x7 unkn’s
0 {-1.11917} 3.94924 0.00171 0.00006 1.59278 | 1.18575 0.00167 0.00005
45 | -1.77564 | 0.18028 0.00162 0.00009 | -0.34243 | 0.52946 0.00307 0.00014
90 | 1.31949 | 0.02861 0.00414 0.00014 |-0.06133 | 0.05094 0.00105 0.00005
135 | -0.64824 |  0.03664 0.00095 0.00003 |-0.34343 | 0.27795 0.00378 0.00016
180 | 0.34643 | 0.40560 0.00092 0.00001 0.41848 | 1.14534 0.00240 0.00011
i ‘ Absolute Error Absolute Error
] Exact 1| 6x1 panels | 12x2 panels | 24x4 panels | Exact | 6x1 panels | 12x2 panels | 24x4 panels
i Re 1 9x4 unkn’s | 15x5 unkn's | 27x7 unkn's Im 9x4 unkn's | 15x5 unkn’s | 27x7 unkn’s
i 0 |-0.40422 1 7.60443 0.01768 | 0.00037 |-1.93885| 2.38158 0.03155 0.00195
145 | 162434 | 0.17415 0.03144 0.00050 0.96750 | 3.39658 0.04162 0.00160
i 90 | 1.34517 | 0.69713 0.08058 0.00268 | -0.05335 | 0.66881 0.02175 0.00079
: 135 ] 0.46963 | 0.12650 0.03086 0.00002 0.34171 | 0.59344 0.06261 0.00169
180 | 0.13773 ! 0.96278 0.05209 | 0.00035 0.33188 | 4.12517 0.05409 0.00123
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DISCUSSION

Yue, D. K. P.,; You showed a result showing asymptotic (large N) convergence rate of
O(N'') which seems much too slow for cubic spline representations. What would you expect
the convergence rate to be for your method?

Maniar, H.: T am not aware of theoretical convergence rates for this scheme. Only recently
has the validation step of the scheme been completed and now we are addressing issues like
convergence rates. So far, to estimate, with some confidence, convergence rates through
numerical experimentation and comparison with exact/benchmark results has been difficult.
This is mainly because, either the scheme is very accurate with a few panels (e.g. diffraction
force on a bottom mounted circular cylinder) and/or benchmark results are available to an
insufficient number of significant digits to infer a meaningful convergence rate (cf. the table
for diffraction forces on a submerged spheroid).

Nevertheless, the added mass of a translating sphere in an infinite fluid and the horizontal
mean drift forces on a bottom mounted circular cylinder seem to provide an opportunity. If
N=total number of unknowns, and we expect an error proportional to (I/N)**p, then in the
former case we have p=3 for a linear potential and p=6 for a quadratic potential.

The results shown at the workshop were for the horizontal mean drift force on a bottom
mounted circular cylinder. Convergence rates for the total force and the water line integral
contribution (the surface integral contribution is similar) were shown. For a cubic potential
approximation, the total force converged rapidly, but the water line integral contribution
converged at a relatively slower rate (reduced to linear convergence for large N). Since then,
we have re-examined the specific problem and attribute the relatively slow convergence rate
to outer Gauss integration error (residual minimization step). A new computation with more
accurate outer integration shows the water line integral to converge cubically (p=3).

Martin, P. A.: You are using B-splines for both the unknown potential and the surface
geometry. As I understand the situation, many CAD systems represent surfaces using so-
called Non-uniform Rational B-Splines (NURBS), these are just the ratio of two splines.
Have you tried doing this? It has been tried recently in a different context by Valle ez al. (1).

Note: It would be hopeless to use NURBS to represent the unknown potential, because this
would lead to a nonlinear algebraic system (for the unknown coefficients in the denominators
of the NURBS). '

(1) Valle, L., Rivas, F. & Catedra, M. F. (1994) Combining the moment method with
geometrical modelling by NURBS surfaces and Bézier patches. IEEE Trans. AP-42,373-381,

Maniar, H.: No, I have not tried using NURBS surface representations in the scheme. But,
in the early development of the scheme I did give it a brief thought. Since the current scheme
utilizes surface polynomials (in the parametric space) for the self-influence algorithm and the
normal derivative of the potential, rational polynomials (NURBS) were ruled out.
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Yeung, R. W.: Scott Coackley of my department has recently completed a Bi-cubic Surface
Spline method for wave and body interaction, though for a different problem. I am pleased
to see that the types of convergence and accuracy reported in your abstract are consistent with
our favourable experience. I have two questions. The first is that it seems sufficient to use
a collocation method instead of a Galerkin form for the integral equation. I am curious why
the latter is chosen. Second, we experience some difficulties with mapping the pointed end
of the body (say the poles of a sphere) to the spline (u-v) parametric space. This is a singular
point in the mapping and the geometric difficulties lead to higher errors in the solution at
these points. I wonder if you have a better way of circumventing this problem.

Maniar, H.: In general, the number of unknowns (coefficients of the potential B-spline
expansions) and the number of 'panels' are not equal. If no conditions are imposed on the
potential, one must pick as many collocation points as unknowns, and this would require
selecting points besides, say, the centroid. Practically, for an arbitrary body, this would be
difficult and non-robust. Alternatively, presumably the total number of unknowns may be
reduced by imposing some conditions on the potential. For complex bodies or bodies with
corners, to impose conditions other than functional continuity across patches (in a compositely
built body), would require anticipating the solution and may be difficult. We consider the
Galerkin approach a robust alternative.

Mapping a 'topologically' triangular surface to a rectangular parametric space will introduce
a singularity (vanishing Jacobian) at some point. Currently, we use a least squares fitting
procedure to model the geometry and, at times, have encountered some difficulty due to this
singular mapping. But, with the introduction of 'sufficient' additional B-splines to aid the fit,
the least squares procedure seems to reduce the error (deviation from the exact surface) and
'localize' it to the region near the singular parameterization.

For bodies with singular mapping, the only results I have obtained have been integrated
quantities. In general, these results are fairly accurate and the presence of this singular point
must not affect the solution globally. Substantial error, if any, introduced due to the singular
mapping must be local.
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