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Introduction

The existence of localized fluid oscillations in the neighbourhood of a body which is
placed symmetrically about the centreline of a channel and extends uniformly throughout
its depth was proved by Evans et al (1994). These ‘trapped modes’ are antisymmetric
about the centreline of the channel and have finite energy. They occur at frequencies
at which waves, antisymmetric about the centreline, are unable to propagate down the
channel, i.e. below the cut-off frequency for the channel. At least one trapped mode is
known to exist for any given body geometry but the numerical evidence of Evans & Linton
(1991) indicates that the number of modes increases as the length of the body increases.

This work extends the recent work of McIver & Linton (1995) and proves that trapped
modes do not occur in certain classes of channels which have variable cross-section. In
addition, lower bounds for the trapped mode frequencies associated with channels which
contain a body are obtained. The proof depends on a vector identity which is derived in
the next section.

Theoretical analysis

Cartesian axes are chosen so that the zy—plane is in the undisturbed free surface and
the z—axis points vertically upwards. The channel walls are at y = +d(z) where d(z) — d,
a constant, as |z| — oo._Any body in the channel is assumed to be symmetrically placed
about its centreline and to extend uniformly throughout the depth. Under the assumption
of linear theory, the motion is described by a velocity potential

® = Re[¢(x,y) coshk(z + h)e (1)
where h is the depth of the fluid, w is the frequency of oscillation and k satisfies the
dispersion relation w? = gktanhkh. A localized oscillation which is antisymmetric about
the centerline of the channel is sought and so ¢ satisfies

(VE+ k)¢ =0 inthefluidregioniny >0 “ (2)

with boundary conditions

%(?- = ( onthebody and upper channel wall, (3)
n

¢ =0 ony =0 outsidethebody (4)
and

¢ —0 as|z]— o0, 0 <y < d(x). (5)

A trapped mode corresponds to a nonzero solution of (2) - (6). Without loss of generality
¢ may be assumed to be real as the real and imaginary parts of ¢ must separately satisfy
the boundary value problem.
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The function v is defined by
¢

z 6)

V=

where w is a strictly positive function. Elementary manipulation shows that v satisfies
2
Viy+ =Vw.Vv = —--%(V"’w + k2w), (7
w w

where (2) has been used. Further manipulation yields the identity

V. (wVv) = w?(Vv)? - -?;—(Vzw + k*w). (8)

Integration of (8) over a fluid region D with boundary 8D with the use of the divergence
theorem yields the result

2 2
2(70)?2 - & (v 4 k2wyav = [ 428 L20w
/Dw (Vv) w(V w+ k*w)dV = - ¢0n — Is (9)

where 0/0n is a derivative in the outward normal direction to D. If, in addition to being

strictly positive, w satisfies
(VE+kHw<0 inD (10)

then the LHS of (9) is non-negative. If the RHS of (9) can be shown to be non-positive
then both sides must vanish identically and a examination of the integrand on the LHS
shows that this can only be true if (Vv)? = 0 throughout D, i.e. v is a constant. But
v = ¢/w and so this would imply that ¢ = Aw for some constant A. Asw > 0,if =0
at any point on @D then A =0 and hence ¢ =0.

In the following sections, suitable functions w will be chosen to prove the nonexistence
of trapped modes in a variety of circumstances or to obtain bounds for the trapped mode

frequencies.

Channels with variable cross-section
Suppose that there is no body in the channel. Let D be the whole of the fluid region
in ¥ > 0 contained within the lines « = £L and choose

w = sink(y + ¢) (11)

where € > 0 is fixed but arbitrary. Clearly, w > 0 provided that k(d(x)+¢€) < 7. Condition
(10) is identically satisfied and so the LHS of (9) is non-negative. If L is allowed to tend
to infinity then the RHS of (9) reduces to

- / ¢*k cot k(d(z) + €) n,, ds
y=d(z)

where n,, is the component of the outward normal to the channel wall in the y direction.
This is non-positive provided that n, > 0 on the upper channel wall and k(d(x) +¢€) < 7/2.
As € can be made arbitrarily small, this latter condition is equivalent to k& < 7/2dmax
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where 2diax is the maximum width of the channel. Thus, no trapped modes exist for
k < m/2dmax. The cut-off frequency for a channel which has a width 2d at infinity is given
by m/2d. If this is also the maximum width of the channel then no trapped modes exist
below the cut-off.
Examples
1. There are no trapped modes below the cut-off frequency in a straight-walled channel,
with a rectangular protrusion, y =b, —a<z < a, b< d.
2. Any trapped modes below the cut-off frequency in a straight-walled channel with a
rectangular indentation y = b, —a < z < a, b > d must be at frequencies in the range
7/2b < k < 7/2d. This agrees with the predictions of Evans & Linton (1991).

Doubly antisymmetric modes

We now consider a channel with an indentation which is symmetric about z = 0 and
is contained between x = +a and seek trapped modes which are antisymmetric about the
line z = 0 as well as the line y = 0. Thus, only the region =z > 0, y > 0 is considered as

the potential satisfies
¢$=0 onzr=0. (12)

Let D be the fluid region in x > « and choose w = sink(y + €) as in (11). Equation (9)
yields

oz

when kd < 7/2. Now let D be the fluid region contained between the lines z = 0 and
z = a and choose -

/ ¢Q-d-)- dy = ~/ w?(Vv)2dV - / ¢k cot k(d + €) dx < 0, (13)
r=a D y=d

w =sink(x +¢€), ka < w/2. (14)

Equation (9) reduces to
/ w?(Vv)2dV = / ( ?-? —~ ¢%k cot k(a + e)) dy—/ ¢%k cot k(z+€) ng ds (15)
D T=a Ox y=d(z)

where n; is the component of the outward normal in the « direction along the indentation.
The LHS of (15) is clearly non-negative and, from (13) and (14), the RHS is non-positive
ifka < /2, kd < /2 and n, > 0 along the indentation in « > 0. This yields ¢ = 0 in the
region 0 < z < a. Thus, the LHS of (13) is zero and an examination of the RHS of (13)
yields ¢ = 0 in « > a. Thus, if a/d < 1, there are no doubly antisymmetric modes below
the cut-off frequency.
Example
There are no doubly antisymmetric trapped modes in a straight-walled channel with
a rectangular indentation y = b, —a < x < @, b > d if a < d, which agrees with the

numerical predictions of Evans & Linton (1991).

Bounds for the lowest trapped mode frequency
We now consider a straight-walled guide containing a body symmetrically placed about
its centreline. Let D be the total fluid region in y > 0 and choose

w = cosky, kd < m/2. (16)
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Equation (9) reduces to

/ w?(Vv)?dV =
D body

where n,, is the component of the inward normal to the body in the y direction. If n, <0
on that part of the body in y > 0 then (17) yields

/ wA(Vo)2dV < ksinkdcoskd [ v?da, (18)
D

y=d

&k tan ky n, ds + / 6k tan kd dz (17)
y=d

using the fact that v = ¢/w. Following the method used by Simon & Ursell (1984), a
series of parallel, straight lines are drawn from the line y = 0 to y = d in the region z > 0
and another set in the region z < 0 which contain the body and are such that there is a
line emanating from every point on y = d. As v = 0 on y = 0, integration along the line
C; joining (zo,0) to (z,d) yields

ov
v(x,d) = . 7 ds = smﬁ/ (w——) dy (19)

where £ is the angle which the line makes with the z—axis, (0 < 8 < 7/2). Thus

1 41 ov\* tan kd ov\?
2 < — 2 (== = 2 22
v*(z,d) £ e /0 5 dy A, w (as) dy Fenl s Jo. w (63) dy (20)

using (16). Substitution of (20) into (18) gives, after some manipulation

.2 2 .2
/ Wi (Vo)2dv < 3Lk [ (-‘?-’i) dv < S kd / WA(Vu)2dv  (21)
D . D’ sin”f Jp

sin® g Os
where D’ is the region swept out by the lines, D’ € D. Clearly if kd < (3, this is only
possible if ¢ = 0. Thus, trapped modes can only occur below the cut-off frequency at
values of k satisfying 8 < kd < 7/2.

Example
The largest possible value of 8 which produces suitable lines which contain a rectan-

gular block of length 2a and width 2b is given by tan g = (d — b)/a. Values of 3 are
compared with the numerical results of Evans & Linton (1991) in the table below.

b/d a/d Jé] numerical value of kd
0.25 0.05 1.504 1.569
0.25 0.2 1.310 1.531
0.25 0.6 0.896 1.243
0.25 1.0 0.644 0.974
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