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1. Introduction

A tandem of horizontal cylindrical bodies moves with constant velocity in the free surface of

an inviscid, incompressible fluid under gravity. The resulting fluid motion is described by the
linearized water-wave theory (the corresponding boundary value problem is usually referred to
as the Neumann-Kelvin problem).

Almost exhaustive mathematical theory of the 2-D problem has been given by Kochin (1937)
and Vainberg & Maz’ya (1973) for the case of totally submerged body. For a single semiimer-
sed body this problem was treated both theoretically (Ursell 1981, Lenoir 1982, Kuznetsov &
Maz’ya 1989) and numerically (see Suzuki 1982 and references cited therein). It was found that

- the problem is inconsistent, since it has a two-parameter set of solutions. Thus, the original

statement, including Laplace’s equation, the boundary conditions and the conditions at infi-
nity, should be complemented by a couple of supplementary conditions. Some versions of such
conditions were suggested in the above cited papers. Kuznetsov 1992 introduced a new pair of
supplementary conditions, which provides that the resistance is purely wave-making, i.e. there
are no splashes at bow and stern, and it is expressed by just the same formula as for totally
submerged cylinder. In the present work we extend these supplementary conditions to the case

_ of surface-piercing tandem.

2. Statement of the problem
The geometrical notations are given in figure 1:
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Figure 1.

We assume that the fluid motion described by a velocity potential is steady-state in the coordi-
nate system attached to the tandem. The potential must satisfy the following boundary value
problem

Viu=0 in W, Ugs + Uy =0 on F=F_ UFUPF,, (1)
Oufon = Ucos(n,z) on intS = (S-U S+)\ {P1, P2, Ps, P}, (2)
limg 40 |Vu| =0, sup{|Vul: (z,y) € W\ E} < oo, 3)
Jwap 1Vul?dz dy < oo, (4)

where U is the constant speed of the cylinders, v = gU~2, g is the acceleration of gravity, n is

the unit normal directed into W and E is an arbitrary compact set in R2, containing Dy UD_

with contiguous parts of F.
The condition (4) allows to avoid strong singularities at P;_4. This leads to existence of the
derivatives uz(P,),...,uz(Py), which should be treated as the limits along the free surface.
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To complete the statement in the case of tandem one has to add four conditions, instead of
two supplementary conditions required for a single surface-piercing body. To introduce them
in such a way, that the resistance is purely wave-making and its expression coincides with that
obtained for totally submerged body, we need two auxiliary results. They hold for any solution
to (1)-(4).

(2) The asymptotic representation at infinity can be written in the form (cp. with Kuznetsov

& Maz’ya 1989):
u(z,y) = C + Qlog(v|z|) + H(—z)e"(Asinvz + Bcosvz) + (z,y), |2| = |z +iy] — oo.

Here C is an arbitrary constant, H is the Heaviside function and the estimates ¥ = O(|z|™!),
|V4| = O(|z|~2) are valid. To determine the constants A, B and Q we have the equalities:

—ig = [ué—ﬁ(e"y cosvz) — g—ge"” cosvz| ds + 5:‘ +[v ™ uz(x,0) cos vz + u(z,0) sinvz] :Zit ,
B =a
/ 8n e”¥sinvz) — ——e"¥sinvz] ds + Z +[v " u,(z,0) sin vz — u(z,0) cos vz) ;:; ,
B4

@ + g[ux(Pgﬂ) — Ug(Pog1)] = V[gau/an ds,

where ), means summation of two terms.
(i1) The formula for total resistance to forward motion looks- as follows:
pV r=-—a =a
R = —z—(A2 + B?%) — {[uz(w 0.+ [uf,(a:,O)]z:;l}

(p denotes a density of the fluid). One can derive it in the same way as in the case of single
body (see Kuznetsov 1990). The first term in the right hand side gives the wave-making part
of resistance, and it has the same form as for totally submerged body (cp. with Kochin 1937),
but unlike the latter case the expressions for A and B contain out of integral terms. Another
. part of resistance (so called spray resistance) is connected with possible splashes at the bow
and stern points of partially submerged bodies, and hence, with mass flow. In view of (2) the

mean additional flux of fluid at infinity downstream due to the presence of cylinder Dy is equal
to

—271nQy = (2v) 7" [uz(Pss1) — uo(Posr)] -
The following pair of supplementary conditions
u:c(Pl) - u:c(P2) = Oa uw(P3)._' uz‘(P4) =0 (5)
vanishes Q4+, and hence, the spray resistance is equal to zero. Due to (5) we can write ut

instead of uy(Pax1) = uz(Pax1)-
As the second pair of supplementary conditions we take the linear relations:

Afu} + Afu; + BT+ + B;T_ + CiTp =0, k=1,2, (6)

where T'y = u(Psy1) — u(Pet1), To = u(Ps) — u(P,) and the coefficients in (6) are defined as
" follows:

Aéq:l)/z = 2v7 1 sin(vly/2), A(&H)/2 = 2v~ " sin(vly/2) cos v(a + L[2),

Bé:”:Fl)/? = —sinv(a + I /2)sin va — cos(vL/2) cos v(a + 13/2),

B(:,.:H)/2 — cos(vlg/2) cos v(a + L[2), Ciaxryj2 = sin(vlx/2)sinv(a + L/2).
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Here Iy = |ag F a| is the length of Dy along the free surface, L = I, + I_+ 2a is the length of
tandem and only upper or lower signs should be taken both in subscripts and in superscripts.

The conditions (6) are degenerated when Iy + I_ = 2v™17n, 26 = v~ 7(2m + 1) or when
I+ 2a = 2v7'rn, I+ 2a = 2v~17m with positive integers n and m. Obviously, degeneration
is impossible for sufficiently small values of v. Under the assumption u(P;) + u(Ps) = 0 (or,
what is the same, under the appropriate fixation of constant term in the velocity potential) the
- non-degenerate conditions (5), (6) imply that terms out of integrals vanish in the formulae for
A and B. Conversely, if the out of integral terms are equal to zero, (5) holds and a, I1+ do not
satisfy the above relations, then (6) is true provided u(P,) + u(Py) = 0. v

3. On unique solvability of the problem (1)—(6).
To demonstrate that the formulation (1)-(6) is well-posed we seek a solution in the form

u(e) = [ MRG0 dse+ 3wl a), 7

i=1

where G(z;() is Green’s function (see e.g. Kuznetsov & Maz’ya 1989), u is an unknown real

density on int S and p,..., s are unknown real numbers. The function (7) satisfies (1) and
(3)—(4). From (2) we get

oG ~ 9G .
— pu(z) + 2/5.“(2)8—%(2; () ds¢ +2;”i5_n—z(z’ai) =2f, z €int S. (8)

This integral equation contains additional algebraic terms. Substituting (7) into (5), we obtain
two algebraic equations with additional integral terms:

/; #(¢) [Go(ars1,¢) — Galar, )] ds + ZHi[Gaz(akﬂ, a;) — Ge(ar,a)) =0, k=13 (9)

=1

Similarly, the supplementary conditions (6) yield two equations more of the same type as (9).
We do not write them down explicitly, because it would take too much space.

Thus, we reduce our problem to the integro-algebraic system, containing five equations.
The investigation of solvability and uniqueness properties for the integro-algebraic system and
for the problem (1)-(6) follows the scheme proposed in Kuznetsov & Maz’ya 1989. On this way
one arrives at the following result.

Theorem Problem (1)-(6) has unique solution for all v > 0 except possibly a discrete sequ-
* ence of values.

4. Numerical calculations
A selection of results are presented in figure 2 for tandem consisting of two half-ellipses (ratio of
horizontal and vertical half-axes is equal to 2). The Froude number is defined as Fr = (vL)~Y/2.
Its range in fig. 2(a,c) is chosen to avoid degeneration of the algebraic system. This system arises
through discretisation of the Green formula integral equation complemented by (5) and (6).
Half-ellipses are equal (I = I, = I.) in fig. 2(a) and a/l = 1/3 (1), 2/3 (2), 1 (3). In fig. 2(b)
the length I,.(I_) changes, all other lengths are fixed and a/lp = 1/3, where lo = [_(14+). Also,
U/l = 1.5 (1), 2.0 (2). Asymmetric tandems are considered in fig. 2(c,d): I. = lo = 1./2 (T)
and Iy = lp = I_/2 (II). Also, a/ly = 1/3 (1), 2/3 (2) in fig. 2(c) and Fr = 0.8 (1), 0.85 (2)
in fig. 2(d). It is interesting to note intersection of curves in the cases (1) in fig. 2(c) and

(2) in fig. 2(d).
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DISCUSSION

Yeung, R. W.: For resistance as a function of Froude number as shown in Fig. 2, one would
expect an oscillatory dependence because of interference effects. This does not appear to be
the case. Can you comment?

Motygin, O. & Kuznetsov, N.: Numerical calculations of wave resistance have been
performed only for a restricted range of the Froude number. This was caused by two

circumstances.

1) The integral equation based on the Green formula, which was applied for the
calculations, is inconsistent for a sequence of irregular Froude number values.

2) We had to avoid these irregular values, and our computer is not powerful enough for
using more sophisticated methods without irregular values.
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