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Introduction

The location of huge floating platforms like a floating airport which was once designed in Japan
will not be offshore but close to the shore where the water is not deep. When the size of the platforms
is so huge like the designed Japanese airport (a few thousands meters long) as comparable to the
horizontal scale of depth variation of the sea bottom, the bottom topography will affect wave forces
on the platforms. We will present a numerical method based on linear theory to predict wave forces on
such a large floating platform supported by numerous floats and located on the sea of sloping bottom
close to the shore.

Refraction and Diffraction

We assume a platform supported by numerous floats of vertical and truncated circular cylinder
shown by shaded circles in Fig.1. The platform is floating on the free surface with its long side paralell
to the shoreline (the y axis ). For simplicity the number of floats in the lines paralell to the shore is
assumed to be large enough to be considered infinite. The sea bottom has a slope from the shore of
zero depth (z = 0) to offshore of large depth. The bottom contour is paralell to the y axis.

The length scale of the platform is assumed to be of the same order of the horizontal scale of
depth variation of the sea, while the size of the cylindrical floats is very small. Therefore waves
propagating distances as long as the whole platform’s dimension will be refracted under the effect of
the bottom slope. On the other hand the wave motion within the distance comparable to the size of
each cylindrical float will be considered to be the wave motion on the constant water depth.

When waves with the crest line paralell to the y axis are incident from offshore, they will be
refracted due to the sloping bottom. Their height and length will change during propagating on the
distance of the platform’s scale. They are diffracted by the floats and the interaction between them
will occur. If the waves come close to the shore to become steeper than some critical value, they will
break.

Refraction on the sloping bottom whose slope is much smaller than the wave slope will be described
by the mild slope equation (Mei (1988))

V(CCyV{) + wz%g =0 (1)

where ((z,y)e™? is the wave elevation and the operator V implies to take the gradient in the horizontal
plane. C and C, are the local phase velocity and the group velocity of waves. They are determined by
the wave frequency w and the local wave number k at the reference depth h. The local wave number
satisfies the relation

= ktanh kh (2)

The mild slope equation can not describe the localized effect of scattering and radiation of the
waves by the floats. Our assumption is that the size of each float is very small relatively to the scale
of the bottom slope and the water depth can be considered to be constant in the region of the float
size and cloge to it. The solution of the diffraction waves in this inner region must match with the
outer solution, a solution of the miled slope equation in the region shown by Q in Fig.1, valid away
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from each float. In the diffraction problem the inner solution of wave elevation at close to a truncated
circular cylinder will be written in the form

Cr(r, 0)e™t = ZOF Jin (k) Bro HP (kr) + Z Bunp K (0pr) | cos m@eit (3)
m==i p=1

where (r,6) is the polar coordinate with the the origin at the center of the circular cross section of
the cylinder. Fp, are constants to be determined later. By, are determined such that the solution (3)
satisfies the condition of zero normal velocity on the surface of the truncated circular cylinder. % is
the local wave number at the center of the cylinder. iop(p = 1,2,...) are the solutions of imaginary
number of equation (2). We henceforth omit the time factor ™.

Upon letting » — oo, the outer limit of the solution (3) will be

Gt~ S Foldm(kr) + Buno B (k)] cos mo 0

m=0

.Equation (4) will be matched with the solution of the mild slope equation in the region Q. The
unknowns F, are determined by this matching. The mild slope equation is solved numerically as
stated later and eq.(4) will be imposed as a boundary condition on Pj(j =1,2,...) shown in Fig.1.

For the radiation problem this boundary condition for the outer solution should include a particular
solution satisfying the inhomogeneous condition for the normal velocity on the float surface.

The assumption of an infinite number of the floats in the y direction will lead to the wave motion
periodical to the y direction. The boundary condition on two chain lines in Fig.1 with the spacing B
is the zero normal fluid velocity.

Boundary Conditions Ashore and Offshore

We need the boundary conditions both ashore and offsore for the mild slope equation (1). Deriva-
tion of the shore condition is not straightforward.

Waves will become steeper as they come close to the shore and break when their height is over
a critical value. This effect must be considered in the shore boundary condition. Floating platforms
will not be located so close to the shore and we may assume it is not in the midst of the breaking
waves. Consequently we may not need to predict the pressure field of breaking waves that is anyway
difficult. The effect we need to model will be reduction of the amplitude of the reflected waves from
the shore. With this idea we derive a mathematical expression of the reflected waves from the shore
accounting for the effect of sloping bottom and empirically prescribed reflection coefficient less than
unity resulting from wave energy dissipation by breaking.

We consider first the case of complete reflection from the shore. At shallow region close to the
shore the mild slope equation (1) reduces to

o o[ (o2e) + 35 (=) =0 @

Diffraction waves due to the floats disposed as shown in Fig.1 are generally short crested. So we seek
the solution of the linear shallow water equation (5) in the form of

o = (@) cos( T )™ (©)

where s is the bottom slope and therefore sz is the local water depth th(x). The solution 7, (z) is given
by

24
() = Wi (4’”’ )/ where k=220 g )
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Wiu(€) is the Whittaker’s function as a solution of the equation

d* W, 1 kil
G (e o ®©

For n = 0, the solution will be a well-known one

m(z) = Jo (2w\/§§) (9)

We can show a superposition of those functions

Cn = Ao <2w \/gi—s) s 2 1 Vo (422) cos (217;7,) 1)

is a mathematical expression of the completely reflected waves in the linear theory. The first term
is known to match with the nonlinear solution at very close to the shore. Our conjecture is that it
may be true with the terms periodical in the y direction too. In this equation An(n =0,1,2,...) are
constants and x(n) implies that x is a function of n as given in equation (7 ).

At large distances from the shore but when

Ty < an() (1)

is satsified, the asymptotic espression of euation (10) will be (Abramowitz & Stegun (1964))

2

-1 N 2 \~i
~ 2 n? ' z_z ol z _ T -z
Cr~ Ao (gsﬂ 98) cos (2w1/ 5 4) +> AnV2n (gsx) cos (2w‘/sg k(n) + 4) +0(e™)

n=1
(12)
This is evidently a standing wave when the incident waves are completely reflected at the shore.
Furthermore it agree with our intuitive description of waves propagating in a channel with the sloping

bottom. A wave mode of sinusoidal variation in the z direction as well as of the periodical behaviour

cOs (%‘-ky) in the y direction can exist only when kB > 2nr is satisfied. Local wave number k will

become larger when the water depth becomes shallower. The consequence is that the maximum of
n that can exist will decrease when the waves are away from the shore. The condition kB > 2nr
determining the max n at a distance z is identical to eq(11) when the local wave number at the shallow

water
e w

k ~ Vi (13)

is substituted.
It is straightforward to obtain a linear expression of the incident waves periodical in the y direction
and propagating on the sloping bottom toward the shore. It is

4t : LRI ann
Ao T . ( z } 2 An Wi (—B‘-”’) + €™ Migy (‘B‘x) (27rny)
= 2 - Q. [ — —_ cos 14
== [Jo (2w,/gs)+zYo “"/gs> +n§=l: 5 N 5 ) (19

where M, (§) is another Whittaker’s function. Naturally this expression is singular at the shore z = 0.
The superposition of equations (10) and (14) at a small z value will give the shore condition for
the mild slope equation in the form

¢(=Ci{1+Cr (15)

The value of C3/C, is prescribed such that the reflection coefficient from the shore, which is predicted
by some empirical formula as a function of the slope of the sea bottom (for example see Battjes (1988)),
is equal to C2/C1/(1 4+ C2/Ch).
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The offshore condition is readily derived assuming the place is far away from the platform and the
water depth is very deep. It is

Jmaz .
(= 4 3 DjemRomc®X cos (koy————zng 5 1)) (16)
=1 0

where the first term is the incident wave and
B 21 (j — 1))2 . [koB
cosx-—\/l ( kB , Jmaz = —é-T—r-]+1 _ an

Numerical Computation

It is a well known procedure to replace a boundary value problem of the mild slope equation with
the stationarity of a functional of the wave elevation. The boundary conditions (4), (15) and (16),
and the condition of zero normal fluid velocity on the chain lines in Fig.1 are incorporated in this
functional. The region of the free surface € is divided into a number of panels and the functional is
expressed with unknown ¢ on those panels (linear variation assumed on the panel).

Numerical results for wave forces of the first order and the second order ( steady forces) computed
by integrating the pressure on the floats’ surface will be presented.
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