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Introduction

A possible scheme for a breakwater is the use of an array of identical in-line barriers with gaps
between them enabling vessels to pass through. The simplest model of such a breakwater design
consists of a periodic array of thin-walled breakwaters in the form of identical vertical barriers
extending throughout the water region. A number of authors have considered the problem of
scattering of an incident wave by such an. arrangement including, more recently, Dalrymple
& Martin (1990) who consider normal incidence only, Williams & Crull (1993) who exploit a
technique used by Achenbach & Li (1986).

The approach used here, whilst restricted to in-line barriers enjoys certain advantages over
the methods used in the above literature. Appropriate eigenfunction expansions are used to
obtain two singular integral equations, one for the jump in the pressure across a typical barrier,
the other for the horizontal velocity through a typical gap between adjacent barriers as described
in a related problem by Wu (1973). The important quantities are R, and T),, the reflection
and transmission coefficients associated with different propagating modes, and measure the
effectiveness of the breakwater. These coefficients are shown to be the solution of simple matrix
equations which use integral properties of unknown functions that are the solution of a set of
integral equations. For long enough waves only one reflected and one transmitted mode will
exist and in this case it can be shown that any approximate solution produce upper and lower
bounds to |Ro| and |Tp|.

By choosing judicious series expansions of the unknowns to reflect their physical charac-
teristics, extremely accurate complementary bounds to |Ro| and |Tp| can be produced with a
minimum of effort. Typically the upper and lower bounds for |Ro| have a relative error of
O(10~*) using just five terms in the series expansion.

Although complementary bounds can only be guaranteed for sufficiently long waves, the
results for |R,| and |T}| in shorter waves, when more than a single wave is reflected and trans-
mitted, are also extremely close using either the velocity or potential jump formulations.

Formulation and solution

Cartesian co-ordinates are chosen with the barriers occupying 2 = 0, 0 < 2z < h where h is the
water depth, in a periodic in-line array, with gaps 2a and distance d between their centres. A
wave is incident upon the array from z > 0 making an angle 7 — 6y € [0, 37) with the positive
z-direction. Because the barriers extend throughout the depth the depth dependence can be
extracted out and the linearised velocity potential ®(z,y, z,t) witten as

@(a"’yazvt): Re ¢(z, y) coshk(h — z)ei“’t, (1)
where time-harmonic motion of frequency w/2r is assumed and k is the real positive root of
w? = gktanh kh. Then ¢(z,y) satisfies

82(}5 o2 ¢

9 T oyt k¢ =0, in the fluid, (2
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3 0, on the barrier. (3)

The incident wave is of the form

bi(z,y) = e-i(ﬁoy+o:oac)7 (4)

having wavelength A = 27 /k where we have written 8o = ksin 8y, ap = k cosfp. Because of the
periodicity of the barriers the field at a point y + d differs from that at y by a factor e~ifod,
being the change in phase of the incident wave. Thus we may write

d(z,y+md) = el ), m=0,+1,42,... (5)

and we need only consider a single strip such as y € [-—%d, 1d], —oco < z < oo with (5) providing
the extension of the solution to the whole plane.
The most general form for ¢(z,y) which ensures that (5) is satisfied is

(o e}
H(z,y) = Z Ape~i(Brytans) (6)
n=—00
where 5
nmw
Pn=Po+——, and an= (k? - B2)V/2, (7)

to satisfy (2). By analogy with the definitions of ag and B earlier we define 3, = ksiné, so
that o, = kcos@, It is easily seen that there will be only one reflected or transmitted mode if
the spacing d < A/2. In general the number of reflected and transmitted modes will depend on
the value of d/\ and the angle of incidence, 6y and for now we assume that values of n such that
—r < n < s will result in propagating modes. For 8, > k we define v, = (62 — k*)/? (= —ia,
for B, < k) and we introduce the functions 9,(y) = e~ that are orthogonal over [—1d, }d]
We can now write, for z > 0

Bz, y) = %Yo(y) + D Ane ™Pu(y), (8)
n=—oo
whilst for z < 0 -
P(z,y) = Z Bre" 1 (y) (9)
n=--0o0
and we have assumed v, = —ia, for n = —7,...,s, 7, > 0 otherwise. Since A, and B, are the
reflection and transmission coefficients for n = —7,...,s, welet R, = A,, and T), = B, for these

n.
Continuity of ¢;|z—0 and ¢|z=¢ across the gap L, and the condition of no-flow across the
barriers now gives, after some algebra

[ K@ 08 =vula) v Ly, (10)
g
(K(y,t) known) and
/I., un(y)'obm(y) d?/ = Smn, (11)
g

where S = {Syun}, for m,n = —r,...,s and with

R= (R—-'I‘7 R-—7'+1> IR Rs—la Rs)Ta

A = diag {and},__, , (12)

B = (0,...,0,1,0,.. .,O)T, entry at posn. corresponding to n =0
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it turns out that iA(R - B) = SR, (13)

giving R = -i(S -iA)™'AB, (14)
whilst R+T=B, (15)
where

T = (Ty,Tery1y- -, Tom1, Ts) L. (16)

A judicious expansion of the unknown u,(y) involving Chebychev polynomials weighted by
the anticipated square-root singularity in u,(y) at the end-points results in a simple but accurate
approximation to S in the form

sT = F K-'F (17)
where Fp,, = Jn(Bra) and
Kmn= Y (@) m(Bra)Jn(Bra) (18)

An alternative formulation in terms of the jump in ¢ across one of the barriers provides a set of
integral equations similar to those in (10) with an associated matrix P as in (11) and eventually
results in R = iPA(R — B) from which it is clear that P = S~} whilst

R = —i(I-iP)"!PAB. (19)

Here, a similar approximation to the set of unknown functions proportional to the jump in ¢
across a barrier gives rise to an approximation to P in the form

PT=G'M'G (20)
where Gmn = (8rnd) " Jimt1(Bnc) and
0 (rd
Mpyn = _Z ((/g:i“))f*fm+l(ﬂrc)']n+l(ﬂrc)~ (21)

and where ¢ = —lid —a.

Results

Figures 1 and 2 show the variation of the reflection coefficients in two cases of normal and
non-normal incidence. They show how only one reflected wave exists for long waves and how
other modes occur at higher wavenumbers. Results obtained using both velocity and potential-
difference formulations agree to within two significant figures in all cases and comparisons with
the results of Dalrymple & Martin (1990) and Williams & Crull (1993) suggest a marked im-
provement.
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Figure 1: |R,| for § = 0° and 2a/d = 0.5 (gap to screen size is 1:1).
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Figure 2: |R,| for 8 = 30° and 2a/d = 0.8 (gap to screen size is 4:1).
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