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Background. The hydrodynamic interaction of surface waves with marine structures has always been of
much interest to marine industry. In many applications, potential flow model can be an adequate predictive
tool. Even so, there are many cases of practical interest when fluid viscosity is important. A traditional
but empirical means of accounting for viscous effects is to use formulas such as Morison’s equation [1] with
pre-determined coefficients. The validity of such a procedure cannot be fully established even for the case
of an infinite fluid. Aside from an interest derived from engineering applications, there exists also the basic
need of understanding how viscosity may alter the behavior of the flow near a free surface, particularly
in the neighborhood of a body boundary. In our ongoing effort to study such viscous flows near a free
surface, we presented in the last Workshop [2], as a first step, a highly accurate spectral formulation for
modeling inviscid wave-cylinder interaction. The potential of this method has now been further tapped and
informative results for the case of a viscous fluid are now emerging. It is worthy to mention that there
have been considerable recent advances in the inclusion of viscous effects in free-surface flows with a body
(see e.g. [3], [4] and [5], [6] etc). Most of the above advances are restricted to two-dimensional problems.
Because of the enormous computational demand on three-dimensional flows, a highly efficient method needs
to be developed. Efficiency aside, it should also resolve the intricate flow details often associated with fAlow
separation. The treatment we describe below has led to a fruitful direction of investigation.

Spectral methods have been frequently studied and applied to obtain solutions of many fluid dynamics
problems (e.g. [7] and [8]). They are well known for efficiency and accuracy. Cylindrical geometry may be

considered as one of the simpler shapes, and is therefore particularly appropriate for this type of solution
method.

Problem Formulation and Numerical Procedure. As in [2], the fluid domain is taken to be a region
between two vertical, concentric cylindrical surfaces, with the inner cylinder being considered as the body
and the outer cylinder a closure boundary which can be taken at a large distance away from the inner one.
Our formulation of the free-surface flow problem for a viscous fluid is based on primitive variables, and is
similar to that given in [5). The Navier-Stokes equations are complemented by one kinematic and three
dynamic boundary conditions on the free surface, the latter representing the stress continuity relations.
These boundary conditions are linearized for the present study.

The Navier-Stokes equations are solved using a fractional-step method. This is implemented in the spirit
of a “projection method” [9] which involves, in the first half-step, solving for an intermediate auxiliary
velocity field from the momentum equations without the pressure gradient term. Then in the second half-
step, a Poisson equation for the pressure field is solved, utilizing the auxiliary velocity solved previously. The
projection decomposition then leads to a correction of the auxiliary velocity to yield the true velocity field
satisfying the field equations and boundary conditions.

The above numerical procedure is implemented in cylindrical coordinates using a pseudo-spectral method.
Space limitation allows only a brief description here [10]. An ADI scheme [11] is first used to solve the mo-
mentum equations. With this scheme and the introduction of two additional intermediate auxiliary velocities,
the three scalar momentum equations (three-dimensional partial differential equations) become nine ordi-
nary differential equations (ODEs.) These resulting ODEs are next solved by using spectral collocation
methods [7]. The pressure Poisson equation is then solved efficiently and accurately by the pseudo-spectral
formulation presented in the last Workshop [2].

Analytical Validations. To validate our solution method, we apply two tests for which analytical so-
lutions can be obtained. First, to show this method’s ability to handle large-time simulations, we solve a
cylindrical version of Stokes’s second problem, corresponding to a cylinder rotating time-harmonically in a
viscous fluid. Analytically, this turns out to be a one-dimensional problem, with the spatial factor of the
circumferential velocity field expressible as a single function f(r) of a “Reynolds-number modified” radial

267




100 . 100
3 X .
ok 21 ~———— Velocity profiles for first period ————  Re{f(D)} (Analytical)
’ N0 " Steady-state veloci! files ors [ ——— :
R AN N y ty pro I 2 Im{f(r)} (Analytical)
NN T oo ° Re{f(r)} (Numerical)
2 TN = ¥ .
0.25 £ 4T/8 A2 s - ° Im{f(r)} (Numerical)
—~ A e T3 e E
= ~ > Y =
0.0 Z — -
N s & oz
- P =
028 AL L a7 =
s % 0.00 5‘
050 T8 -4 c‘
02 b
omnf
L /st
.‘m ) 1 5 L 1 1 1 L 1 ] ’OM L 1 1 1 L 1 1 1 1 1
1.00 1.08 1.10 116 120 128 130 1.96 1.40 145 1.80 1.00 1.08 1.10 1.16 120 126 130 136 1.40 1.45 1.50
r r

(a) (b)
Figure 1: Velocity profiles in the first period of motion and in steady-state (left). Real and imaginary parts
of function f(r) (right).
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Figure 2: Velocity vectors in the plane 6 = 0 at ¢t = 1.0 (a) and ¢ = 50.0 (b).

coordinate r. As a stringent test, we solve numerically this problem as a fully three-dimensional trensient
problem. To simulate the desired physical conditions, free-slip boundary conditions are used on the top and
bottom (horizontal) boundaries, as well as the (far-field) outer cylinder.

Fig. 1a shows a sample of the circumferential velocity profiles v(r,t) at eight instants of time during the
first period of oscillation and the corresponding limiting “steady-state” profile at the 7¢th cycle. Numerical
results show that the transients are only significant during the first couple of cycles of oscillation. To show
the accuracy of our numerical solution, we further plot in Fig. 1b a comparison of the real and imaginary
parts of the analytical complex steady-state velocity function f(r) with the numerical values. Excellent
agreement is observed.

As a second test problem, we utilize the solution of a Poiseuille flow between two parallel surfaces, with
the bottom surface being a no-slip and the top a free-slip boundary. Again, this is treated as a three-
dimensional transient problem by the solution method discussed in the last section. This is accomplished
by imposing quadratic Poiseuille velocity profiles onto both inner and outer cylinders as Dirichlet conditions
for the velocity at time ¢t = 0, and held constant thereafter. Further, a pressure field of constant gradient in
the flow direction is applied on these cylindrical surface as a Dirichlet condition for pressure.

The numerical results for such a test are presented in Fig. 2, with the radius of the outer cylinder being
three times the radius of the inner one. Velocity profiles are shown in the vertical plane of symmetry behind
the inner cylinder, one (a) for an early time instant and the other (b) one for a large time. In Fig. 2a, the flow
is rather transient, and two vortical structures are observed at two lower corners. Fig. 2b shows an almost
steady flow, in which the velocity vectors everywhere in this plane are observed to have approached the
Poiseuille velocity profile prescribed on the two cylindrical boundaries. A close examination of the numerical
results reveals that a maximum difference between the value of velocity at any point in the domain and its
expected steady-state value is less than 1% at time ¢ = 50.0.
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Viscous Free-Surface Flows: Results and Discussion. Having established our numerical method to
be reliable and accurate, we proceed to include the genuine free-surface conditions on the top surface of the
fluid. The Cauchy-Poisson wave problem as solved in [2] is now re-solved for the case of a viscous fluid. In
such a problem, an initially still fluid is set to motion by releasing a prescribed free-surface hump at time
t = 0. In order to understand the influence of viscosity, results for viscous flow are compared with their
inviscid counterparts, where appropriate.

Numerical results, for both viscous and inviscid flows, are obtained by a mesh size of LxM x N = 64x64x
32 (L, M and N denote the numbers of grids in radial, circumferential and vertical directions respectively for
our spectral formulation). The Reynolds number Re, defined by cylinder radius a, gravitational acceleration
g and viscosity v as ,/@ga/v, is set as 10,000. The time step At, non-dimensionalized by 4/a/g, is chosen
to be 0.05. The amplitude of the initial free-surface hump A4, non-dimensionalized by a, is taken to be 0.1,
and the center of the hump is placed at r = 2.318. The three-dimensional code was run for as long as 300
time steps. It was observed to be sufficiently long to allow the “main wave” to diffract around the cylinder.

There is an enormous wealth of information coming out of the solution of this type of problem. Some
preliminary observations are discussed here. During the early stage of the simulation, viscosity is expected
to play only a minor role; the early-time flow features of viscous and inviscid flows are therefore expected
to be similar. This is evident from Fig. 3a, in which the free-surface elevations at r = 1 (body-free-surface
intersection) and r = 2.318 (center of initial hump) are plotted as functions of time. Further, Fig. 3a shows
that the waves damp out much sooner in a viscous fluid than in an inviscid fluid. This behavior can also be
observed from the perspective views of the overall free surface pattern displayed in Fig. 4.

In Fig. 3b, we show the hydrodynamic forces acting on the circular cylinder for the cases of inviscid and
viscous flows. It is apparent that, in the case of viscous flow, the only significant component is the horizontal
force due to pressure, which varies with time in a similar fashion to its inviscid counterpart, except for a
phase shift.

For a closer look at the viscous-flow patterns, we include a vorticity plot and a surface-contour plot as
Figs. 5a-b. In Fig. 5a, the velocity vectors are overlaid onto a vorticity contour plot in the vertical plane of
symmetry containing the initial wave peak. This figure corresponds to ¢ = 12.00. Two vortices of opposite
signs can be clearly seen near the intersection of the body and the free surface. A boundary layer immediately
above the bottom is also observed. Fig. 5b shows the corresponding free-surface elevation contours. Also
plotted are the velocity vectors on the free surface. It is of interest to note that the vorticity component
normal to the free surface is vanishingly small (not shown) except near the body. This suggests that vortex
structures generated by the surface motion are primarily parallel to the water surface. These and other data
of an extensive nature will offer valuable insights for understanding vortical free-surface flows near a body.
In the Workshop, these results will be discussed in depth, as well as the exciting potential of the present
method for treating a host of other problems of practical interest.
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Figure 3: Time histroy of wave elevation at r = 1 (body-free-surface intersection) and r = 2.318 (center

of initial hump) in the vertical plane of symmetry behind the inner cylinder (left) and time history of
hydrodynamic forces on cylinder (right).
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Figure 5: Velocity vectors and vorticity contours (a), and Velocity vectors and vorticity contours (b) in the
vertical plane of symmetry behind the inner cylinder at ¢ = 12.00 (Dash-line represents counter-clockwise

vorticity in (a) and negative elevation in (b)).
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