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1 Introduction

In analyzing the hydrodynamic interaction of a body and free-surface waves, boundary integral equation methods
(BIEM) are currently more popular than volume methods like finite-element (FEM) because: (1) these are
exterior problems, but BIEM with a suitable Green function often allows the computational surface to be the
body surface alone; and (2) the complexity of the body geometry and the time dependence of the free-surface
geometry may make surface grids easier to generate than volume grids.

Classical BIEM are computationally expensive because they generate dense linear systems, whereas FEM
generate larger sparse systems. Using iterative methods, the computational cost (time expended and imemory
allocated) of solving an N x N dense system is at least order N2, but can be as low as order N for an N x N
sparse system. So in three dimensions, if n unknowns are required per dimension, the cost of BIEM will be n*
and the cost of a volume method as low as n3. Recently, there have been advances in the acceleration of BIEM
which amount to sparsification techniques for the dense systems. The most widely implemented of ‘these is
multipole acceleration (MA), which has been shown to reduce the computational cost to order (n? = N) (1, 2].

The MA algorithms have been instrumental in a significant shortening of the duration of the design cy-
cle for many problems in low frequency electromagnetics, where the Green function is the Rankine free-space
Green function, there are only piecewise-constant Dirichlet boundary conditions and engineers routinely con-
template problems with order 10° unknowns. However the MA algorithms have been slow to catch on in the
hydrodynamics community where complicated Green functions may be used to satisfy free-surface and ’periodic
boundary conditions, the need for knowing the fluid velocity as well as the potential has motivated the use
of higher-order panels, and the Neumann/Dirichlet boundary intersections have motivated special treatments
for some panels or nodes. While such problems may be treated with MA in principle, the implementation is
daunting. Only in hydrodynamic problems cast as desingularized or vortex-dynamics formulations, using the
fundamental free-space Green functions, are researchers benefiting from MA algorithms.

An algorithm which avoids some of these shortcomings is the precorrected-FFT method (3, 4]. In this
abstract, the precorrected-FFT method will be described and indicators of its performance for hydrodynanuc
problems will be provided.

2 A Linearized Hydrodynamic Problem

Consider the familiar linearized frequency-domain radiation/diffraction problem for a body with surface S,
upon which there is a unit normal vector #, in the semi-infinite fluid domain V, under the free surface Sy. A
potential ¥(Z;w) is to be found which satlsﬁes the field equation

AY(Fw)=0 FeV, Q)

Z = (z,9, 2) € R® with 2z = 0 the plane of S;. ¥(#;w) must also satisfy the boundary conditions

(—w? + 95 )¢ 0 ZFeS;, n-Vy=f(&) F€S5, )

and a radiation condition. This boundary-value problem may be recast as a boundary-integral equation to be
solved on S) by Green’s theorem and the Green function

G (£€,w) = G(F€) + G(F:€,w) 3)

*This work is supported by Advanced Research Projects Agency contract N00174-93-C-0035 and DABT63-94-C-0053, Natlona]
Science Foundation contracts MIP-8858764 A02 and ECS-9301189, The Joint Industry Project Wave Effects on Offshore S!+uctures,
F.B.I. contract J-FBI-92-196, and grants from Digital Equipment Corporation and I.B.M.

tDept. of Ocean Engineering, Massachusetts Institute of Technology (xmeyer@chf .mit.edu)

!Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (jphill@rle-vlsi.mit|. edu)

$Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (wvhite€rle-vlsi.mit. pdu)




with
k(24¢)

-

G(E;E):% and G(&Ew )=_+-—/ ak ST, (k) (4)

in which r is the Euclidean distance between & and £, r' is that distance between # and the image point (f
reflected about Sy), v = ‘i, R is the horizontal distance between & and {, and J, is the zeroth-order Bessel
function. A collocation procedure combined with discretization of the body surface into N constant strength
planar panels leads to the dense linear system

Dp=Pf (5)

“where p, f € RV are the vectors of unknown panel potentials and known panel Neumann boundary conditions
respectively, and D, P € RV*" are given by

D;j = — 1 d€ #; - VG!(3i;€,w), and P,-,-:L/ dé G' (&i;€,w) (6)
P
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where a; and 7; are the area and the unit vector normal for the j-th panel, and &; is the i-th collocation point.

Typical radiation/diffraction programs solve (5) using either direct factorization or an iterative procedure.
Direct factorization grows in computational cost like N3, and so is too expensive for problems with mo;e than
a few hundred panels. The computational costs of 1terat1ve procedures grow like N2, so such methods can be
used for problems with up to a few thousand panels. However, to analyze a structure hke a platform supported
by an array of cylinders, order 10° panels may be needed. It is hopeless to use a standard iterative prok:edure
to solve such a problem, since storing the associated matrix would require order 102 gigabytes.

3 The Precorrected FFT Algorithm

When an iterative procedure is used to solve (5), only matrix-vector products are required. To see this, consider
that most iterative procedures solve (5) by guessing a p°, evaluating the resulting residual

r®=Pf-Dp° (7

and then updating the guess by computing p* = F(p°,r°), where the function F depends on the specifics of
the iterative method. It is possible to use the fact that iterative methods only require matrix-vector products
to both: avoid the N? cost of explicitly forming and storing P and D, and to reduce the time of comtuting
Pf — Dp® to typically order Nlog N. Such an approach, the precorrected-FFT algorithm, is presented below.
Only the computation of Dp, which is a potential, will be described, as the computation of Pf can be handled
identically. Also, for simplification, let G/ — G; this loss of generality will be rectified once the basic concepts
of the algorithm have been outlined.

To develop a faster approach to computing Dp, after discretizing the problem into N panels, conSIder sub-
dividing the problem domain into an array of small cubic cells so that each cell contains only a few pankels. If
the problem were homogeneous (which it is not, in general) there would be order N cells. Several sparsifica-
tion techniques for D are based on the idea of directly computing only those portions of Dp associated with
interactions between panels in neighboring cells, with he rest of Dp somehow approximated to accelerate the
computation. The MA algorithm mentioned above is one example.

Another approach to computing distant interactions is to exploit the fact that at evaluation points distant
from a cell an element of Dp can be computed accurately by representing the cell’s singularity distribution
using a small number of weighted point singularities. Figure 1 summarizes the approximate computation of Dp
consisting of the following four steps:

1. Project the panel singularity distributions onto a uniform grid of point singularities (the “grid singulari-
ties”). -

2. Compute Dp for evaluation points at the grid points (the “grid potential”) due to grid singularities.
3. Interpolate the grid potential onto the panels.
4. Directly compute the nearby interactions.

There are several possible approaches to computing the the grid singularity strengths so as to represent
the panel potentials accurately. One effective approach is to require that the potential of the grid singularities
representing a panel singularity distribution match the exact potential of the panel singularity distribution at
carefully chosen test points. As shown in [3], a good choice of test points are Gaussian quadrature points
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Figure 1: A 2-D schematic of the precorrected-FFT Figure 2: An 8 x 8 array of cylinders, each w:th 240
algorithm. Interactions with nearby panels (in the panels.

grey area) are computed directly, interactions be-

tween distant panels are computed using the grid.

on a surrounding sphere twice the diameter of the cube. Empirical results indicate that a 3 x 3 x 3 array of
grid singularities per unit cell will approximate the potential well enough to insure that the solution to (5) is
accurate to 0.1%, provided that the grid singularities are used to approximate the panel potentials at léast one
cell distance away. :

Once the grid singularities have been determined, the grid potentnal must be computed. The potential at a
grid point £ is the sum of the contributions from all of the grid smgula.rlt,les Since the free-space Green function
G(%;€) depends only on the relative distance between the points & and £, the regular grid allows the com]iutatlon
of the grid potential to be carried out by a three-dimensional space-invariant discrete convolution. Since this
convolution is space-invariant, it can be computed using the FFT in order M log M operations, where M is the
number of grid points. Or, from a linear algebra point of view, one can note that the matrix mapping the grid
singularities to the grid potential is a block-Toeplitz matrix whlch can be embedded in a larger block- clrcnlant
matrix, and this block-circulant matrix can be diagonalized by the discrete Fourier transform. :

Once the grid potential has been computed, it must be interpolated to find the potential at the collocation
points. It is easily shown that an accurate interpolation operator can be determined using the transpos¢ of the
test-point based projection operator described above.

The combination of projection, FI'T-accelerated convolution, and interpolation can be used to approximately
compute Dp in order N log N operations, provided the density of panels in space is relatively uniform. Unfortu-
nately, in this approximation, the portions of Dp associated with neighboring cell interactions is not accurate.
This inaccurate nearby representation must be removed and replaced with the exact direct calculation. It is
possible to construct a “precorrected” direct interaction operator for the panels in two cells a and b, D% l which
consists of the direct interaction operator for these neighboring cells, but with the errors introduced by the grid

singularities exactly subtracted out. When used in conjunction with the grid singularity representation, par

results in the exact calculation of the interactions between panels which are close. D% is expensive co}mpute
initially, but costs no more to apply than the uncorrected Da .

In solving potential integral equations, it is sometimes useful to reduce the size of the problem by formhlatmg
a Green function which accounts for the special geometry of a system, thereby removing part of the p}oblem
domain from consideration. For example, the use of the free-surface Green function G/(Z;¢£) eliminates the need
to explicitly solve for unknowns on the free surface. Unfortunately, the precorrected-FFT method de%cnbcd
above cannot be used for such a Green function because calculating the grid potential from the grid singularities
will no longer be space-invariant. However, the free-surface Green function does have a structure that can be
exploited by convolution with a modified form of the FFT. Note that, at any given frequency, equation (3) may
be written

G’(5;€W)=G(z—f,y—7)»2“()+G(z—f,y—77,2+()- . (8)
The difficulty for the precorrected-FFT method is that the second term depends on z +(, a general difficulty in




Number of Panels | Number of Iterations | Memory Allocation | CPU Time
3840 10 10 42
15360 14 40 182
61440 19 162 788

Table 1: Performance of the precorrected-FFT code using the free-space Green function G(; e") on an IBM 590
workstation. Memory allocation is reported in megabytes and CPU time is reported in seconds.

problems with planar interfaces. The matrix mapping the grid singularities to the grid potentials in this case
is then a sum of a matrix with block-Toeplitz structure, corresponding to the first term of (8), and a matrix
with block-Hankel structure, corresponding to the second term of (8). The Toeplitz-like part of the matrix
corresponds to the discrete convolution with the free-space Green function, and can be treated directly with
the 'FT as described above. Because a Hankel matrix is related to a Toeplitz matrix via a permutation matrix
which is simple to compute, multiplication by a Hankel matrix may also be done with order N log N opérations
via the FFT. Furthermore, the permutation matrix may be represented in Fourier space so that multiplication
of a vector by the sum of a Hankel and Toeplitz matrix can be performed using a single forward and inverse
FFT pair. Thus at each iteration, this type of Green function may be incorporated by multiplication in Fourier
space by a diagonal matrix and a permutation matrix, requiring negligible additional computation time.

4 Algorithm Performance

A preliminary indication of the performance of the precorrected-FFT algorithm for free-surface problems may
be found by solving a canonical single-layer formulation (with no physical significance). For this problein only
the body surface is considered, with the Dirichlet boundary condition %(Z) = 1, £ € S} set, and the|source
strength which produces this potential is found by solving the first-kind integral equation. The kernel of this
equation is simply the free-space Green function G(&;£). The geometry considered is an array of cylinders as
shown in Figure 2. The cylinders are discretized with 240 panels each and problems with increasing numbers of
total panels are devised by adding cylinders to the array. The solutions for three cylinder arrays are computed
and the computational cost is reported in Table 4. The allocated memory increases with N as expected. The
time expended per iteration appears to increase at a slightly slower rate (and clearly a slower rate than N'log N)
because overhead is being amortized over a greater number of iterations as V increases.
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Discussion

e W. Schultz: This method looks like the vortex-in-cell method. In what way is it similar and different?

e T. Korsmeyer: There are quite a few methods for the solution of the Poisson, Laplace, or Helmholtz
equations which use the FFT to account for long range particle or boundary element interactions (see [1)).
The distinction between methods is often in how the short range interactions are accounted for. For the
method presented here, we believe the projection, interpolation, and pre-correction operations ate unique.
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