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1. INTRODUCTION

An oscillating-water-column (OWC) is a device designed to extract energy from the ocean waves.
Typically it is a (partially) submerged hollow structure trapping water and air. The water, driven
by the waves, moves through the submerged aperture and the moving internal free surface causes the
pressure fluctuation of the air in the chamber. The air, in turn, drives turbine while it moves back
and forth through contraction. Theories accounting for the wave interactions with OWC were set
forth in the early 80’s, based on linear theory of water waves and an assumption of simple harmonic
oscillation of the air pressure with its mean value equal to atmospheric pressure. Commonly further
simplification was made considering only constant vertical displacement of the internal free surface;
namely a piston mode. For a review of the theory and application see [1] and [2].

The unique difference of wave interactions with OWC, compared to other structures, is the oscillating
pressure acting on the interior free surface. However, in principle, the problem can be analysed
using the three dimensional panel method which has been applied extensively to the analysis of wave
interactions with a solid boundary. Here we describe two approaches to solve the problem based on a
panel method. In the first approach the velocity potentials are evaluated explicitly. The waveisource
potentials are distributed on the interior free surface as well as on the body surface. A special form
of integral equation is suggested which requires only minor modifications on the existing panel codes
developed for wave interactions with offshore structures or ships. In the second approach, the physical
parameters of interest are evaluated from the conventional diffraction and the radiation solutjons of
the rigid body motion using Haskind relation and other symmetry relations, without solving for any
additional potentials.

The computational results demonstrate that the panel method is applicable to this kind of problem.
The results from the two approaches converge to each other. These results are compared with other
results obtained from the mode decomposition developed in [3] where the internal free surface is
described by a superposition of the piston mode and other oscillatory higher-order modes.

2. ANALYSIS

In accordance with the usual assumptions of the first-order radiation-diffraction theory, the velocity
potential $ exists and the flow field is governed by the Laplace equation

V=0 (2.1)

Assuming regular incident waves,  can be expressed in the complex form & = Re(gpe'“t), where Re
denotes the real part, w is the frequency of the incident wave and ¢ is time. A Cartesian coordinate
system (z, y, z) is fixed in space with z = 0 the undisturbed position of the free surface and the z-axis
positive upwards. On z = 0, ¢ is subject to
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where p is the fluid density, g is gravity and p is the complex amplitude of the oscillatory pr¢ssu.re,
P = Re(pe®“t), acting on the free surface. The constant atmospheric pressure does not contribute to

the power transfer. p = 0 except on the interior free surface.

To consider a general situation, we suppose that there are M separate interior free surfaces and the
pressure may be different on each surface. The velocity potential ¢ then can be expressed as
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Here ¢p is the sum of the incident wave potential and the scattered potential due to the presence of
the fixed body. ¢; denote radiation potentials and they correspond to the mode of rigid body motion
when j = 1,...,6. When j > 7, ¢; are defined to be the potentials due to the pressure on one of
the interior free surfaces while no pressure is applied on the others. An index m is used as a pointer
for the interior free surfaces and mn = j — 6. Thus ¢; is due to the pressure p,, applied on the m-th
interior free surface S™.

The incident wave system is defined by the potential

igA cosh[k(z + h)]

¢r = w cosh kh

exp(—ikz cos B — ikysin g), (2.4)

where A is the amplitude, k is the wavenumber defined by the dispersion relation K = wlfg =

k tanh kh, h is the fluid depth, and S is the angle between the direction of propagation of the incident
wave and the positive z—axis. On the undisturbed position of the body boundary (S ), the dnﬁ'ractxon
and radiation potentials are subject to the conditions

¢Dn =0 and ¢jn = n;, (2’5)

where (n;,n3,m3) = n, (nq,n5,m) = x X 0, n; = 0 for j > 7 and x = (2,y,2). The unit normal
vector n is defined to point out of the fluid domain. On z = 0, they are subject to

¢p. —Kép =0 and ¢;, — K¢; = 74 - (2.6)

where n; = 0 except n,,46 =1 on S™. Note that n; is defined on S, + S; = S.

Other than the point-wise value of the velocity potentials, the physical parameters of interest are the
forces on the body and the power transfer from the water to air. These are essentially expressed in
terms of the added-mass and damping coefficients defined by

A,'j - -:-)-B,-j = p// n‘qb,-dS (i,j = 1, 2, ...,6 + M) (2-7)
Sy ;
and the exciting-force components
X; ——wp// nyppdS (z—l 2,..,6 + M). (2.8)

Su

As discussed in Section 4, 4;; = A,., B;; = Bj; andBy; > 0 for all i and j. They are the same|as those
of the rigid body motion when i, < 6.

With the definitions (2.7-8), the hydrodynamic force component F; on the body is expressdd in the
form i
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The power transferred across the interior free surface is equal to the time-average of the rate of energy
flux

M
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where (2.2) has been invoked. When the body is not fixed, the net rate of energy absorption is obtained
by subtracting the rate of work done by the air pressure to the body, denoted by dw/ot, froin (2 10)

as shown in (3].




The ‘capture width’, W, is the net energy absorption rate normalized in respect to the corresponding
rate of input in the incident-wave system, per unit width of the wave crests, equal to -;-pgA’v,: where
v, = dw/dk is the group velocity. Upon substituting (2.3) into (2.10) and subtracting dw/dt, we have
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where S,,,2m and y,, are the area and z and y coordinates of the centroid of S{*, respectively. The
optimum values of p,, may be obtained from a system of algebraic equations which consists of the
equations of motion and M equations obtained from dW/dp,, = 0.

3. COMPUTATION OF THE VELOCITY POTENTIALS

All coﬁ:lponents of the exciting forces and the hydrodynamic coefficients may be evaluated directly

from (2.7-8). The required velocity potentials are obtained from the following integral equation;s. With
an operator L defined by '

wst) =m0+ [ deo0FE,  rorxe s R

and
L(4(x)) = 4vd(x) + [ /s df¢(£)-§-%%2ﬂ, for x € 5.  (32)

where G is a wave source potential, the diffraction potential is obtained from

L(¢p(x)) = 4nds(x) for z € Sy, (3.3)

and the radiation potentials from
L(¢i(x)) = // n;G(x;€) for z € Si:. (3.4)
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It is customary to solve (3.3-4) only for z € S, for the unknown potentials on S and then to evaluate
potentials on S; from (3.3-4) for z € §;. However, we find it is easier to extend the existing panel
codes by assuming that the potentials are unknown on S);. Computationally, however, the latter
entails more CPU because of the increase of the dimensions of the unknowns.

4. SYMMETRY AND HASKIND RELATIONS

As noted in [1], B;; in the second term of (2.11) can be evaluated from the Haskind relations. Thus
we only need to solve for the diffraction potential to evaluate the exciting forces (2.8). A]l other
hydrodynamic coefficients in (2.9) and (2.11) can be evaluated from the rigid body radiation potentials
because of the symmetry property of A;; and B;; as shown below.

First we consider the hydrodynamic force on the body in mode i due to the pressure on S{". This is
the case when ¢ < 6 and j = m + 6 > 7. Using boundary conditions (2.5) and (2.6), we havq

Xy =— wp//; $;nidS = —iwp /s.(¢j¢-'u —- $in$i)dS
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This implies the symmetry of the hydrodynamic coefficients defined in (2.7). Similarly, it can be shown
that A;; and B;; are symmetric for 7,5 > 7. Since the wave elevation { = -w¢/ g due to tl#e balance
between the hydrodynamic pressure and the gravitational force, the last term in (4.1) is nllerely the
weight of the net oscillatory volume of the water on S™ caused by ¢;.

Finally the Haskind relations can be derived in the similar manner as in [1], with the resultf:

k ir .
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Thus B;; is non-negative.
§. NUMERICAL RESULT

An example of the computational results is shown below. The OWC is a box shape with one internal
free surface and assumed fixed on the free surface in the infinite water depth. The external horizontal
dimension is 20m, the draft is 5m and the wall thickness is 0.5m. The aperture is on the bottom half
of the weather side wall (—2m > z > —4.5m) with the breadth the same as that of the OWC’s internal
dimension: 19m. The outer and inner surfaces of the OWC are discretized with 1520 and the internal
free surface with 256 panels. The figure on the left shows the nondimensional optimum capture width
calculated using the approach in Section 3. Also shown are the piston-mode approximation and the
additions of higher-order modes. The first higher-order mode is the lowest antisymmetri¢c Fourier
mode in the wave direction. The figure on the right shows the modulus of the nondimensional exciting
force (X7/pgA?L), the damping coefficient (By/pL3w) and the optimum pressure (P, /pgA), where
L = 10m. It shows two kinds of resonances: a low-frequency piston-mode resonance with lat e flux of
water and a high-frequency sloshing mode.
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