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1. Introduction

A cylindrical body, moving forward with constant velocity in an inviscid, incompressible fluid

under gravity, is considered. The fluid consists of two layers having different densities, and the

body is totally submerged either in the upper layer or in the lower one (see fig. 1.1'and 1.2

respectively). The resulting fluid motion is assumed to be steady state in the coordinate system

attached to the body. In the framework of the linearized water wave theory the corresponding

Eoundary value problem is usually referred to as the Neumann-Kelvin problem for a two-layer
uid.

The first description of the dead water phenomenon, occurring in a two-layer fluid, was
published more than 90 years ago [1]. Further results one can find in the survey paper [2],
recent development is covered by [3] (see also references cited therein). However, the}xisting
papers are devoted either to numerical computations or to investigation of the fundamental
solutions. ‘

Here we announce the theorem of unique solvability, which have not been obtained for the
problem to the present day. Also, a formula is derived, which expresses the wave resistance in
terms of the velocity potential asymptotics at infinity downstream. Another formula for the
wave resistance connects it with energy transportation by two modes of waves. ‘

2. Statement of the problem and the solvability theorem
The geometrical notations are given in figure 1.
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Figure. 1 Figure. 2

The upper layer of the density p; is bounded from above by the free surface F(!) = {y = h}.
The lower layer of the density p, > p; has the infinite depth, and the coordinate origin is blaced
in the interface F(?), |

The fluid motion in the upper (lower) layer is described by the velocity potential u(® (u().
The potentials must satisfy the boundary value problem: :‘

Viu =0 in WO, i=1,2, oM+ z/ugl) =0 on FW, (1)
ul =ul®,  pr[ul) + vull) = po[ul + vu] on F® (2
Ou /dn = U cos(n,z) on S, bounding W) internally, (3)

(4)

sup |Vu(i)| <oo, lim |Vu¥=0, i=1,2

Here U is the constant speed of the cylinder, v = g U2, and g is the acceleration due to gravity.
It is well-known from the results on sources, that there exist two regimes of flow about the
body. Namely, if v > v, = (1 +€)/eh, where € = p3/p1 — 1 (see domain D, in fig. 2), then
there exist both surface and internal waves behind the body. Their wavenun}bgrs are v d v
respectively, where v is the only positive root of the equation Q@(v) = 0 existing in this case.
Here Q(k) = (1 + €)k + (k — ev) tanh(kh). If v < v. (domain D;), then there are only surface
waves at infinity downstream. ‘




Using methods of the potential theory in the same way as in [4, 5] the following theorem
can be proved.

Theorem. The problem (1)-(4) has the unique solution for all pairs (¢,v) € Dy (D;), with
possible exception for a set, which is dense nowhere in Dy (D,).

To give an idea of a possnble exceptional set we mention that every line v = const # h~!
(with possible exception for a finite number of lines) can contain no more than a discrete se-
quence of exceptional points. When v > h~!, then the only limit point of the sequence is on
the curve dividing D, and D;. And if v < A~!, then such a line contains only a finite number
of possible exceptional points.

3. Asymptotics at infinity

Derivation of the formula for wave resistance in the next section is based upon the asymptotic
representation of the velocity potentials satisfying (1)-(4) at infinity. For the given right hand
side in the Neumann condition (3) we have as |z| = oo (z = z + 1y):

uD(z2) = Cy + v(2) + H(—x){(.A sinvz + B cos vz)e? 5
+ H(v — v.) [(1 +e— 61/1/0'1) cosh vpy + sinh Voy] (Ao sin voz + By cos I/Ox)}, +z > 0 (5)
u®(z2) = Cy + v(2) + H(~z){(Asin vz + B cos vz)e"?
+ H(v — v.)(Aosin voz + By cos voz)e™?}. - (6)

Here Cy and C, are constants, H is the Heaviside function, and the following estimates hold

P = O(|z|™), [Ve{)| = 0(]z|?), i = 1,2. When S bounds W) internally the coefficients in
(5) and (6) can be found as follows:

, , de"¥ cos vz )z, y)
=900) (5) VY - 7
A=2C / [u (z,y) 5 e” cos vz ——s- ] ds,

(4)
= 2/[ W) (g y)ac (a)ncos o7 — CY¥(y) cos Vom?ﬁja—(::ﬁl] ds,

where C) = —(e?* 4 )71, C® = —(14¢)(e®* +¢)~" and

v cosh vo(y — h) + vosinh ve(y — k)
(v — 1)@’ (o) cosh woh

By @'(v) we denote

(14 €)(vo — v tanh(rvoh))e?

(1) —
Co'lv) = (v — v0)Q' (o)

: C(2)( ) =

€

EV —

[1/(1 +¢e)—ch(v+ Vo)2e‘2”°h] .

dk |,

The coefficients B and By can be obtained by virtue of replacing cos by ~ sin in the expres-
sions for A and Ay respectively. Furthermore, if S bounds internally W), then the relationship

holds:
— - (1)._ -
T Ak
Otherwise, C, — C_. = 0.

ouV
] ds.
on

4. The wave-making resistance

Here we derive a wave resistance formula us1ng the method proposed in [6]. It allows to express
the resistance in terms of the coefficients in (5) and (6) not only when the body is totally im-
mersed in one layer but also when it intersects the free surface or the interface, however qhose
cases are out of this presentation. As the starting point we use the definition of resistance

R=—/S pcos(n,z)ds, | (7)
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where p is the hydrodynamic pressure, which can be found from Bernoull;’s integral p = const —
pigy — p;VD? /2. Here the index i is the number of the layer, in which the body moves, and
V(i)z(:c,y) is the square of absolute value of the fluid velocity, i.e. V(H? = (ul) — U)2 4 (uf?)2.
Using (3), we get

R= p,-/s [2”1qu(i)|2 cos(n,z) — ug)au(")/an] ds. (8)

Let us write the following Green formula

. . (1)
- V240 do dy = _ 0. Tuld o dy — (9t
0 /wf.") w2 da dy = /w},‘) Vul) . Vul) dz dy /6 o W s,
where the normal 7 is directed into the domain W) = R() \ B. Here RV = {|z| <a 0<

y<h}, RO ={lz|<aq, y< 0} and & > max{|z| : (z,y) € S}. By the divergence theorem we
find from here that '

Hul® Gyl .

- (4) = (%) -1 (82
/Sux 5 ds = oW\ s Uy 5 ds +2 /W‘(,‘)(IVu [“)z dz dy i
. Ould) .
= (¥) ds — 9-1 ()2 :
/awg‘)\s Uy’ —5—ds 2 - [Vu'? cos(n, z) ds. |

Hence, we have
R = p; (i)___é u® — 2717y ))2 d
p,/ oy uy 3 [Vul) |2 cos(n, z)| ds.

Also, one can obtain for j #1

ould) .
0= p; /aw(f) [ugj)% — 271wy l)? cos(n,:z:)] ds.

Hence, the resistance can be rewritten as follows: |

2 out)
=Y p O _ 9-1)g,0)p2 -
R pi /z9w$‘>\s [ux i 27 |VulY) cos(n,:c)] ds.

i-_-l i
|

The conditions on F(!) and F©@ ip (1) and (2) allow to rewrite the integrals along the hor:onntal
segments in the last formula in the form |

r=o

@) [, b)) 2v(p2 — p1)

[(pr6(2,0) = pou(a, 0)7]777
By virtue of the asymptotics (5) and (6) for these expressions and for the integrals along vertical
segments after taking the limit as & — +00 we arrive at the following result:

R= _-”4&(5 +¢) (42 + B?)

-1 v v+ vp)e~2woh .
B

Here we have also applied the equality e®o* = ¢(v + 1)/ (e(v = vo) — 214), which obviously
follows from the definition of vy as the root of Q(vo) = 0. It should be taken into account that
the coefficients .4, B and Ay, B, depend on the layer, in which the body moves. |

Now we shall give another interpretation to the formula (9) in terms of energy tra,nsporf:a,tion
due to waves (cf %7], §26). Let i

wi(z, y)= [(1 +e— 61/1/0‘1) cosh(voy) + sinh(uoy)] (Aosin wox + By cos vpz), '

wg?(2,y) = " (Aosin sz + By cos voz), w(z,y) = e(Asin vz + B cos vz)
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be the wave terms in the asymptotics (5) and (6) at infinity downstream. The mean energy per
unit of th free surface which is transported away from the body by the waves of the wavenumber
v and v is equal to

= v 2rfv h 2 0 9
E = 2—7r/0 dr (m[) |Vuw| dy+p2/_°°|Vw| dy)

_ Vo 27 /vo h 0
By= 2 [ (m [ vy + o, [ mIVwé”l"’dy)

respectively. Hence, we have

and

P Y1 2why [ 42 2 = vpE(v — o) 2 2
E= 2(6+6 )(A +B), Eo—m)—(Ao +Bo).

For rewriting the formula (9) in terms of £ and E, we need the notion of group velocity which
describes the speed of the energy transportation. If we denote by w = vU and wy = U
the encounter frequencies of waves with different wavenumbers, then the corresponding group
velocities are C(v) = dw/dv and Co(vo) = dwo/dvo respectively. Since U = (g/v)'/?, then we
have C(v) = U/2. When finding Co(1p), we have to consider v as the implicit function iof v
defined by the equation @Q(v9) = 0. Finally, we can write

U —Co(n) _ l[l _eh(v+ Vo)ze‘z"Oh]
U T2 v(l+e¢)

Now, it is easy to verify that the formula (9) can be rewritten as follows:

_U - C(V) — U - Co(l/o) =
i E—H(V—V*)—_—U———EO’

what generalizes to the case of a two-layer fluid the formula which is given for the homogeneous

fluid in [7].

R =
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