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1 Introduction

"The goal of this presentation is the study of edge waves in a two-layer fluid. No exact solutions similar

to those of Ursell {U] (except for the Stokes mode {K1]) are known in this case even for a bottom of
constant slope. Trapped waves in a two-layer fluid were studied, as far as the present author knows,
only in two papers [K2, K3|, but under the assumptions that the interface does not intersect the
bottom or obstacles—thus no internal edge waves. Therefore the construction of some analogs of
trapped edge waves for a two-layer fluid with an interface not coinciding with the whole plane is of
interest.

We note that, heuristically, we could expect the existence of trapped waves even in a situation
when a one-layer fluid does not have them. More precisely, consider a two-layer fluid with the free
surface coinciding with the plane y = 0 whose depth H depends only on one horizontal coordinate
(say, =), and is a smoothed step, that is, H increases monotonically and H(z) — Hp as £ — —oo,
H(z) — H; as z — oo, Hy < H;. Suppose further that the interface y = —b of the layers is such that
H(0) = b (the line z = 0,y = —b plays the role of a shore for the lower layer). If the densities p; and
p2 are equal, there are no trapped waves. On the other hand, if the density ratio 8 = p;/p2 is very
small, we are “almost” in the situation of edge waves in the lower layer only, and these should exist
independently of what happens in the upper layer. It turns out that these heuristic considerations
can be made fairly rigorous in the case when H varies slowly. Moreover, trapped edge waves exist for
any density ratio provided that the slope is sufficiently small. This seems to be natural in view of the
properties of Ursell’s modes whose total number tends to infinity as the slope tends to zero; some of
them survive even when the density of the upper layer is not vanishingly small.

The proof of these results goes along the following lines. We construct explicitly approximate
edge-wave solutions of the corresponding system of equatiors for certain values of the frequency, prove
that these values lie outside the continuous spectrum, and apply a standard argument [MF] which
ensures that our approximate eigenfrequencies do in fact provide asymptotics of the point spectrum
of the problem. This scheme involves a reduction of the initial system to a standard form K¢ = w?¢
with a self-adjoint operator K; the corresponding considerations were already carried out in [ZI]. The
harder part of the explicit construction of approximate eigenfunctions follows closely {Mi, Z1, Z2]: we
reduce the initial system to an integral equation on the bottom and apply the WKB method (more
precisely, its modification in the sense of [MF, Z1}). Seemingly, this approach can be used for a variety
of different topographies as is done for a homogeneous fluid in [SMK]; here we shall restrict ourselves
to the geometry described above.

2 Construction of approximate eigenfunctions

We look for waves of the form ®(z,y) exp{i(kz — wt)}, and, in order to meet the requirement that H
varies slowly, shall assume that kH(z) = h(ekz), where € < 1 (we take ¢ = H'(0)) and h(z) is a smooth
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function analytic in a neighborhood of the origin; moreover, h'(0) = 1. Passing to dimensionless
variables ekz — z, ky — y, we have for the potentials (12 of the upper and lower layers, respectively,
the following system of equations and boundary conditions:

() = \2g(0), y=0, (1)
q,%) + €2q>(zlz) = o) z,y €y, (2)
3 4 K3 =0, =-h(z), z<0, (3)
q)gl) = q)!("-’)’ y=-c¢, >0, ‘ (4)
BBY - A28 = 3() - 3262, y=-¢, >0, (5)
q>§2y) + 620 = o), z,y € Qy, (6)
¢§2) + €2h'q>(zi-’) =0, y=-h(z), >0 (7

here ¢ = kb, Q) = {0 < y < min{h(z),c},—0 < z < 0}, Q2 = {—-c < y < =h(z),z > 0} (Y
contains the fluid of the upper layer, and Qs that of the lower one), A2 = w?(gk)~!. We shall assume
that 8 € [0,1) is a fixed number independent of €.

Following [Mi, Z1], we reduce the system (1)-(7) to one integral equation. To this end, we look
for ®12) in the form

204 = \/‘211r_e / &#%/*(A1,2(p) cosh ky + Bia(p) sinh ry) dp, k= /1+p?, (8

where the integration is carried out along a contour C to be specified later and A; 2, Bi 2 are new
unknown functions. The integrals (8) satisfy the reduced wave equations in ;2 exactly. In order to
fulfil the conditions on the free surface y = 0 and the interface y = —c,z > 0, we choose B, Az, Bz in
the following way:

Bl = Al)\z/n = AlMl,
Ay = A;(1+ apsinh kccosh ke) = A; My,
By = A1(A\?/k+ ausinh? kc) = A; Ms;

here u = A?/k — k/)?, & = 1 — . Staightforward calculations show that under such choice of Ay, B 2,
the integrals (8) satisfy the conditions mentioned above exactly. Now substituting ®(®:?) in (3) and
(7), we obtain the following integral equation for A;:

/ &%/ [(z, p, \, €) A1 (p) dp = 0, 9)

where

L €)= Mk cosh kh — ksinh kh + ieph/(cosh kh — M; sinh kh), =<0,
(z.p X €) = M3k cosh kh — Maksinh kh + ieph'(M; cosh kh — M3 sinh kh), z > 0.

Thus our problem is reduced to finding approximate solutions of this equation. Similarly to [Z1, Z2],
we look for A; and )2 in the form

A1 = a(p, ) exp(—iS(p)/€),  a(p,€) = ao(p) +ear(p) +..., N =N+ +...

(the fact that the term with the first power of € vanishes in the expansion for A2 is a corollary of
calculations). The asymptotics of the integral in (9) can be calculated, as in [Z1], according to the
ideas of the stationary phase method. In the leading order, this yields an equation for S:

L(qa y 2 AO’ 0) =0, q= Sp' (10)

2




This in fact is two equations (for ¢ < 0 and ¢ > 0). It turns out that for sufficiently small X there exist
solutions with ¢ > 0 and none with g < 0, which, as in the case of a one-layer fluid, have the specific
form g ~ A3/a(1 + p?) and describe trajectories of the corresponding Hamiltonian system escaping to

infinity in p as ¢ — 0 (cf. (21, Z3]). Indeed, (10) for g < 0 reads
A3 = xtanh kh(q);

if ,\8 < tanhhg (here hg = kHp), then there are no solutions. For ¢ > 0, after some elementary
manipulations, we obtain

/\2
tanh k(h(g) — ¢) = ——2r f(rA) =1—-

B(A* — k%)x~!tanh
K‘f(nv ’\0) ’ '

A — ktanh ke

(11)
The factor f(x, ) satisfies
f(8,A)=a+0(N\/k) as ~r—o00, A—0,

and never vanishes for sufficiently small A. Since h(0) = ¢ and h’(0) = 1, the solution, by the implicit
function theorem, has the form

)‘2
9(p o) = =5 +u(Mfx ™2, A§(x tanh ), A3),

where u is analytic in its arguments and has zero linear part in a neighborhood of the origin. Thus
Sp = q is analytic in p in some sectors with apex at the origin and containing the real axis.
The equations for a;, j > 0, are obtained by a word for word repetition of the arguments from
[Z1]; it turns out that
ap = kw372, M3 (x tanh ke) ™, A2)

with an analytic v.

By the analytic properties of the phase and amplitude, it is possible to take as the contour of
the integration in (8) the real axis deformed into the upper half-plane for £ > 0 and into the lower
half-plane for z < 0. This ensures the convergence of the corresponding integrals. Now the conditions
that ®12) do not have singularities at z = 0 lead to

oQ
%[mq@,ko)dp=(2n+1)w, n=0,1,..., _ (12)
which defines a discrete set of eigenfrequencies. The corresponding integrals (8) now define functions
which oscillate in the interval z C (0, ¢(0, o)) and decay exponentially outside this interval. The
asymptotics of these functions can be obtained as in [Z2, Z3] in terms of Laguerre functions. We note
that the procedure of {Z2] cannot be used directly to estimate the residual terms because, in contrast
to [Z2], g(p, Xo) is not analytic in p in a full neighborhood of infinity. Nevertheless, if in the expression
for f in (11) one puts tanh xc = 1, then g is analytic and differs from the original ¢ by O(x~*). This
fact enables one to apply the scheme of [Z2] and prove that (9) is satisfied up to a small in € term.

For small numbers n formula (12) means that g is small, and it is not hard to see (using the
analytic form of ¢), that for such n (12) reduces to

A2 = ae(2n + 1) + O(e?), (13)

which in the case a = 1 (the upper layer is of density 0) is a limiting form of Ursell’s result.
The continuous spectrum of our problem is given by

A2 > A? = min{tanh ho, A%},




where A? is the lower bound of the spectrum of the two-layer problem with the interface at y = —c
and the (straight) bottom at y = ~h) = kH;. It is well-known that A? is strictly positive (although
small for small « or hp). Thus the values (13) for sufficiently small € and n always lie outside the
continuous spectrum.

We note that for sufficiently small a or hgy our eigenvalues can, for n large, become embedded
in the continuous spectrum. It seems reasonable to conjecture that in this case they correspond to

complex eigenvalues with an exponentially small in € imaginary part (as in [LM]). Our approach of
asymptotics in powers of € cannot provide any information on this quantity.

3 Conclusions

We have shown that for a bottom topography which excludes the existence of trapped modes in a
one-layer fluid, there exist analogs of Ursell’s edge waves when the bottom plays the role of a shore for
the lower layer. It is shown further that such modes exist for any density ratio of the layers provided

the slope of the bottom is sufficiently small. Finally, for small mode numbers an extremely simple
formula (13) for the frequencies is obtained.
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