Time Domain Calculations in Finite Water Depth
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1 Introduction

Hydrodynamic computations in the time domain using a free-surface Green function have been presented in
numerous papers [Bingham et al. 1994, Lin & Yue 1990, Beck & Magee 1990]. This abstract demonstrates
the extension of this type of analysis to finite depth. This transient approach may be used to compute the
first-order, frequency-domain hydrodynamic coefficients. We present these here to validate the method by
comparison to computations made directly in the frequency domain for zero speed. With the addition of
forward speed to the analysis the first-order steady force becomes important. It has been shown that this
steady force (with components referred to as resistance, sinkage, and trim) is the limit as time becomes
infinite of the force computed when the body is impulsively accelerated in surge. Since the prediction of
squat (maximum draught; sinkage plus trim) is particularly important in finite depth, we present these
results for various depth-based Froude numbers to demonstrate the forward-speed analysis.

The finite-depth analysis is carried out similarly to our previous infinite-depth approach. The potential
problem is cast as a boundary integral equation. The only boundary appearing in this equation is the body
boundary itself due to the choice of a Green function which satisfies the (transient) free-surface condition
and, in the present work, the bottom (no-flux) boundary condition. One advantage of the time-domain
approach is that the same Green function can be used both for moving-ship problems with nonzero forward
velocity U and for fixed structures where U = 0.

2 The Green function

The appropriate Green function may be written as the sum of a Rankine and a wave part, which we define
in the forms
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[Newman 1992] describes effective algorithms for the integral in (1), and outlines the fundamental diffi-
culties associated with the efficient evaluation of (2). The approach which we have implemented here is to ex-
press (2) as the sum of two terms involving the normalized function FI(X,V,T), as defined by [Newman 1992]
equation 25, and then to consider the difference function F' — Fo, where Fi, can be evaluated from the cor-
responding infinite-depth Green function. Then we expand this difference function in triple Chebyshev
expansions, in unit squares of the rectangular domain 0 < X < 16 and 0 < T < 33. (Physically, the
variables X and T correspond to the horizontal distance from the source to the field point, and the time ¢,
nondimensionalized in terms of the depth k and gravity g.) The coefficients of these Chebyshev expansions
are pre-evaluated, and stored for routine use. At each time step of the convolution, T' =constant and the
triple expansions are reduced to double expansions in the normalized horizontal and vertical coordinates X
and V, which are then evaluated for each combination of source and field points.
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One point to note is the large-time asymptotic behavior of the Green function, since this affects the
corresponding behavior of computed hydrodynamic forces. In the infinite-depth case (2) is exponentially
small, but for A < 0o Gy — O(1/t). When U # 0, and coordinates are used which move with the ship,
GY — 01/t + Osin(w.t)/t, where w, denotes the critical frequency. This is given in the infinite-depth limit
by 7c = w.U/g = 1/4, while the variation of 7, with depth is shown in Figure 5.

3 Results

For zero speed we compare Fourier-transformed time-domain computations to computations made directly
in the frequency domain with a similar boundary integral method, for the surge and heave motions of a
hemisphere. From the asymptotic behavior of the Green function it is clear that the time record has to
be longer for finite water depth than infinite water depth. Alternatively we could approximate the large
time behavior based on the asymptotic analysis. For the added-mass and damping coefficients presented in
Figure 1 we have calculated to a maximum time of 7'=25 and assumed the impulse-response function to be
zero beyond that. The results from the frequency-domain code (“FD”) and time-domain code (“TD”) agree
within graphical accuracy. At low frequency, the heave added-mass rises steeply, in a manner which appears
consistent with the the result of [Yeung 1981] that Ass — oo as w — 0. Figure 2 shows the corresponding
results for the exciting force, with similar confirmation from the frequency-domain computations.

The large time limit of the radiation potential forced by impulsive surge acceleration, ¢”, can be con-
sidered as the steady potential. That means the steady forces, with Neumann-Kelvin linearization, can be
written as the large time limit of
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Figure 3 shows computations of F3(t) and Fs(t) for the Wigley hull. By applying the equations of hydrostatic
equilibrium

Caazz+ Caszs = Fj
Csazz+ Cssxs = Fy

the “steady” sinkage and trim are found. The sinkage is shown in Figure 4. The sinkage increases with
decreasing water depth, or with increasing values of the Froude number Fyp = %:. )

For large values of time, the transient results oscillate at the critical frequency, with slowly-decreasing
amplitude, about the steady limiting values. While computations at higher depth-based Froude number are
of interest, the finite computational domain for the evaluation of the Green function described in §2, poses a
restriction. Work is presently underway to remove this limitation, permitting the estimation of squat closer

to the critical Froude number.
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Figure 1: The added-mass and damping coefficients of a hemisphere for surge (left) and heave (right)
for water depth A = 1.2R. “TD” denotes Fourier transformed time-domain computations, “FD” denotes

frequency-domain computations.
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Figure 2: The exciting-force coefficients of a hemisphere for surge (left) and heave (right) for water depths
h = 1.2R and h — oo. “TD” denotes Fourier transformed time-domain computations, “FD” denotes

frequency-domain computations.
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Figure 3: The approach to the steady vertical force and moment on a Wigley hull for F,, = 0.2, for the
water depths and depth-based Froude numbers indicated.
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Figure 4. The approach to the “steady” Figure
sinkage for a Wigley hull for F,, = 0.2, for
the water depths and depth-based Froude

numbers indicated.
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DISCUSSION

Tuck E.O.: I am encouraged by the fact that the rate of decay of transients seems
to be as rapid at the higher F,, =0.400 as it is at the lower F,, =0.283. As F,, -1,
one might expect that, since the flow is ultimately unsteady then, the transients
might decay less rapidly, perhaps not at all.

Bratland A.K., Korsmeyer T., Newman J.N.: In our results F,, <<1, and the
Green function has the asymptotic behaviour as written in abstract. As F,, — 1
another asymptotic must be considered. Newman has shown that, as F,, — 1 and
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where T =t4/g/h X=%.
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This must be examined closer, but we think you are right in suggesting slower
decay.

Clément A.: In preceeding Workshops (Kyushu, Oxford), I presented the results
of S. Mas' work about numerical computations of the time-domain Green function
in finite water depth, and we observed that the gradient of the function was much
more difficult to obtain through series and asymptotic expansions. Do you need to
compute the gradient of the Green function in your numerical method? If so, did
you observe this difference in the divergence of the algorithms?

Bratland A.K., Korsmeyer T., Newman J.N.: The gradient is required in the
kernel of the integral equation. The Green function is represented by Chebyshev
expansions which can be differentiated term-by-term. This avoids the analytic

difficulties which have been discussed at past Workshops, but we are limited to a
finite computational domain in (X,T) as noted in Section 2 of our abstract.
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