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Dispersion relation and far-field waves
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A theoretical formulation of wave diffraction-radiation by ships or offshore structures, motlvatedl by the
practical and theoretical importance of free-surface potential flows and the formidable complexities of existing
calculation method based on free-surface Green function, is recently developed and summarized in loblesse,
Chen and Yang (1996). One of important results is the analysis of the classical Fourier representa.t10n|0f free-
surface effects, as a two-dimensional linear superposition of elementary plane progressive waves e)cp[4—z(a§+
Bn+ ft)], given in Noblesse and Chen (1995), which defines the wave potential ¢" (£,7) in terms of the single
Fourier integral

tr g% =i} /D _ dslsign(Dy) + sign(§ Da+nDy)] expli(€a+n0)|A/IVD] W

along every curve, called dispersion curve, defined in the Fourier plane (a, B) by the dispersion relation D =0.
Here, ds is the arc length along a dispersion curve, |VD|? = D? +D and f is the frequency. The Fourier
representation (1) is valid for steady and time-harmonic free- surface ﬁows in infinite or finite water depth,
generated by an arbitrary distribution of singularities defined by the generic amplitude function A, which is
given by a distribution of the elementary wave function exp[kz + i(az + By)] over the surface of the wave
generator (e.g. ship or offshore structure) . Here, k= /a2 + 3?2 is the wavenumber.

Considerable information about important far-field features of the waves defined by the Fourier repfesenta—
tion (1) have been revealed in Chen (1996), via a stationary-phase analysis of (1). Specifically, the cdnstant-
phase curves (e.g. crest lines) and the related wavelengths, directions of wave propagation, and phase and
group velocities can be determined explicitly from the dispersion function D. This stationary-phase analysis
of (1), which provides direct relationships between the dispersion curves D =0 in the Fourier plane and the
corresponding wave systems in the physical plane, is briefly summarized here for the generic case of dispersive
waves characterized by an arbitrary dispersion function D, and for the specific case of time-harmonic ship waves
in deep water.

Generic dispersive waves

The far-field features of ¢" are determined by the statxonary points of the phase function = §a+nﬁ along
the dispersion curves. The stationary points are defined by ¢’ =£a'+n8' =0 and satisfy the relation :

&¢Dg — Dy = 0 = h|VD|sin(y — 6) @)

Here, h and 6 are the polar coordinates of the field point (¢,7) =k (cosf,sinf). Furthermore, v is defined by
(cosy,siny) = (Do, Dg)/|VD| and thus represents the angle between the unit vector normal to a dispersion
curve and the « axis. The wavelength of the waves corresponding to a stationary point (2) is given by A=2x/k
where k is the wavenumber at the stationary point.

Expression (2) shows that a point of stationary phase on a given dispersion curve is defined by v =8 or
y=0+x. Thus, a point of a dispersion curve generates waves in the physical space in a direction normal to the
dispersion curve. The sign function sign(éDo+nDp) in (1) is equal to 1 if y=8 or ~1 if y=0+7 . Expression
(1) therefore indicates that a point of a dispersion curve generates waves in the direction of the normal vector
VD to the dispersion curve if sign(Ds) =1, or in the opposite direction if sign(Dy)=—1. Furthermore, at the
stationary point ¢’ =0, the second derivative of the phase function is expressed as :

¢'=cva?+p2d with d=h(¢e' —nB')/(2n) )

where o' and ' are differentiation of o and 8 with respect to the integral variable along the dlspersxonlcurves
and the curvature c is given by : i

c= (—-DiDgﬁ + ZDQDgDag - D?;Daa)/"VDﬂ:; : (4)

As d # 0 in the expression (3), ¢" =0 only at the point of inflection where ¢=0. Two points on both sides of
the inflection point may have the same unit normal and then two groups of waves may propagate in tje same
direction but with different wave number. In fact, an inflection point («. , 8.) of a dispersion curve, determined
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by ¢=0, defines a cusp line along which two distinct wave systems are found. The corresponding angle Ye i8
defined by

Ye = tan™ (Dg/Da)e o 5)
where the subscript ¢ indicates evaluation at (a., ;). .
The curves along which the phase ¢ is constant, equal to C;f =+2r — sign(¢')r /4, are given by

(¢:m) = C3(Day Dg)/(aDa + fDp) with sign(CF) = sign(aDy + BDg)sign(Dy) = (6)
The phase velocity #/, determined by the stationary-phase relation (2), is given by
¥ = —(a, B)f /¥ o

which is orthogonal to constant-phase curves (6) and different, both in magnitude and in direction, f*om the
group velocity 9%, at which wave energy is transported, defined by ;

= —(04/02,0f/88) = (Day Ds)/D; ®

Expresions (8) and (6) yield (¢£,n) - #9 > 0, which shows that wave energy is propagated away fromI a wave
generator in accordance with the radlatlon condition. :

Far-field features of time-harmonic ship waves

The foregoing results, valid for generic dispersive waves, are now applied to the particular case of time-
harmonic ship waves in deep water, for which the dispersion function is given by

=(f-Fa)? -k o

For 7= fF <1/4, three dispersion curves defined by D =0 intersect the axis =0 at four values of «, denoted

at and ai. The ring, inner V and outer V waves correspond to the interior curve comprised between a;

and o the exterior right curve located in a} < a < oo, and the exterior left curve located in —co<a<Lay,
respectwely For 7> 1/4, only two distinct dispersion curves intersect the axis 8=0 at ozz and o . The ring-fan
and inner V waves are respectively associated with the dispersion curves in the left (—oo<a < a;*) aqnd right
(af <a<oo) regions. i
The wavelengths of the ¢ransverse waves (the waves at the ship track n=0), in the various component wave
systems described above, have already been given in Noblesse, Chen and Yang (1996). In th same way, the
wavelengths at the edges (cusp lines) of the wedges containing the inner and outer V waves and the ring-fan
waves are given by A.=2x/k. where k. is the wavenumber at the inflection points determined by the relation

F*k? — (3/2)F?k, + sign(f — Fa)drF\/k. — 312 =0 (10)
The corresponding wedge angle . is !

ve = tan"1 (£1//6F%k, — 1) (11)

The group velocity (8) is now written as
—[F + sign(f~ Fa)a/(2k/?),sign(f — Fa) 8/ (2k%/%)] (12

in the system of coordinates moving with the mean forward motion of the ship, and
V9 = + (F,0) = —sign(f ~Fa)(a, )/ (2*/%) (13)

in the absolute system of coordinates. The absolute velocity V9 is orthogonal to the constant-phase| curves,
whereas the relative velocity 47 is not.

The foregoing simple analytical relationships between the dispersion curves in the Fourier plane and impor-
tant features of the corresponding far-field waves in the physical plane are illustrated in the attached figures for
the four distinct cases which must be considered for time-harmonic flows with forward speed.
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Figure 1: Inner V waves
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The right exterior dispersion curve (o} < a < o) is associated with the inner V waves, for 7 >

0. Two

groups of waves systems (the transverse and divergent waves) correspond to two portions of the dispersion curve
(af <k < k) and (k. < k < 00), respectively.

Figure 2: Ring waves
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The interior dispersion curve comprised between o and o is associated with the ring waves, for 7 < 1/4.
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Figure 3: Outer V waves

J B (]OFZ) Fourier plane |
20.0
10.0- ST
] > A;/point of inflection
0.0 \\;'_\ o (10F)
—10.0 —
=20.0 —
1 Physical plane
n IF P
—30.0 T l T | T I T I T l T T I T | T | T
-60.0 -50.0 -40.0 -300 -200 -10.0 0.0 10.0 20.0 30.0 40.0

The left exterior dispersion curve (—oc < o < ;) is associated with the outer V waves, for 7 < 1 J 4. Two

groups of waves systems (the transverse and divergent waves) correspond to two portions of the dispersi

(—ay <k <k and (k. <k < o), respectively.

Figure 4: Ring-fan waves
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The left dispersion curve (—oo < a < o) is associated with the ring-fan waves, for 7 > 1/4. Three groups

of waves systems (the partial-ring waves, the outer-fan waves and the inner-fan waves) correspond to three
portions of the dispersion curve (] <k < k), (ke <k < 4f?) and (4f2 < k < 00), respectively.
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DISCUSSION

Schultz W.W.: What new conclusions (or discrepancies) are obtained in your
Fourier analysis over the simple ray theory of Eggers (1957)?

Chen X.B., Noblesse F.: The results and the analysis we have summarized differ
from those given in Eggers (1957) and elsewhere, in a number of ways. First of all,
our results are valid for generic dispersive waves generated by arbitrary
distributions of singularities. Thus, the results can directly be applied to a broad
class of dispersive waves, including steady and time-harmonic water waves with or
without forward speed in homogeneous or density-stratified water of infinite or
finite depth. The results we have given provide simple and elegant explicit
relationships between the so-called dispersion curves, defined in the Fourier plane
by the dispersion relation and the corresponding far-field waves. These
relationships include expressions, both in fixed (attached to the earth) and moving
(attached to a translating distribution of singularities) systems of coordinates, for
the phase and group velocities of the various wave components associated with
each distinct dispersion curve. It is also shown that cusp lines of far-field wave
patterns are explicitly related to inflection points of the dispersion curves, which
yield closed-form expressions for cusp-angles. In particular, for the case of time-
harmonic ship waves in deep water considered for illustrative purposes, two
particular exact values of T, namely ’t=\/§/—2—7 (at which no waves propagate

upstream) and T =+/8/3 (where unsteady waves are contained within the wedges

of the steady waves), are given (to the authors' knowledge, only numerical
approximations to these exact values of T have previously been given).

Magee A.: Using the relation you developed for group velocity, for a given T jand
F, can you calculate the time for a disturbance to reflect off tank walls and return
to the ship. In other words, can you find the T and F values free from tank
reflections?

Chen X.B., Noblesse F.: Indeed, the relationship we have given, specifically| the
expressions for the wave propagation angles and the group velocity, can be
directly used to determine the time required for the various components of| the
waves diffracted-radiated by a ship model advancing at constant speed in a water
tank to be reflected at the walls of the tank.
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