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The plane unsteady problem of wave impact onto an elastic beam of finite length is con-
sidered. Initially a wave crest touches the beam at its central point (central impact) or at its
edge (edge impact). Then the liquid hits the beam from below at a constant velocity. The
impact process can be divided into two stages: in the first stage (impact stage) the beam is
wetted only partially, in the second stage (penetration stage) the beam is totally wetted and
continues to interact with the liquid. The impact stage is considered here only. At this stage
the hydrodynamic loads are very high and are dependent on both the velocity of contact region
expansion and the beam deflection. The problem is coupled. The dimension of the contact
region is unknown in advance and has to be determined together with the liquid flow and the
beam deflection. Here the beam deflection is of main interest that is why the numerical method
to treat the problem is designed in such a way that the elastic characteristics can be effectively
evaluated, but not the hydrodynamic ones.

We shall determine the beam deflection, the bending stresses in the beam and the duration
of the impact stage under the following assumptions: (1) the beam deflection is governed by the
Euler beam equation; (2) the beam is connected with the main structure bu rotatory springs at
the beam ends; (3) the liquid is ideal and incompressible; (4) the air influence on the impact,
and both external mass forces and surface tension, are negligibly small; (5) the wave profile near
impact point can be approximated by parabolic contour with the initial radius of curvature at
the top R; (6) the beam length 2L is much less then R; (7) dimension of the contact region
grows with time. Assumption (6) implies that the deformations of both the wave profile and
the beam are of O(e) as € = L/R — 0 at the impact stage. Moreover, in the leading order the
boundary conditions and the equations of the liquid motion can be linearized with the relative
accuracy O(e). '

1 Formulation of the problem

The central impact is considered in this section only, the edge impact is treated in a similar
way. In order to formalize the derivation of the model describing the first stage of the impact,
the following scales are introduced: L as the length scale, L?/(RV') as the time scale, L?/R as
the displacement scale, V' as the velocity scale, pV?(R/L) as the pressure scale, where p is the
liquid density. The original equation of liquid flow, the boundary and initial conditions and
the Euler beam equation, which are written in the non-dimensional variables, contain three
parameters €, o, 3 where a = Mp/(pL), 8 = (EJ)/(pLR?*V?). Here Mp is the beam mass per
unit length, E is the elasticity modulus, J is the inertia momentum of the beam cross-section.
The parameter ¢ can be referred to as the parameter of linearization.

Taking formally € = 0 in the original equations and the boundary conditions, we obtain the
following boundary-value problem with respect to velocity potential ¢(z,y,t) and the beam
deflection w(zx,t):

Pz + Pyy =0 (y <0), (1)
Py = -1+ wt(x’ t) (y =0, lxt < C(t)), (2)
p=0 (y=0z[>c(t), (3)
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@ —0 (2?2 + 142 > 00), (4)

p(l'ry’ t) = '-(Pt(l'a:% t): (5)

w O*w
w =0, Wag E kw, = 0 (x = £1), (7)
w=w;=0 (lz] < 1,¢ = 0), (8

The bending stress distribution o(z,t) is given in*the dimensionless variables as o(z,t) =
Wqe (7, t), with its scale Eh/(2R), where h is the maximal thickness of the beam. The positions
of the contact points are described in the symmetrical case by the only function c(t). Despite
the fact that both the equations of motion and the boundary conditions are linearized, the
problem remains nonlinear as c(t) is unknown. The ’spring’ conditions (7) were introduced by
Kvalsvold and Faltinsen (1993), & is the nondimensional spring stiffness.

The formulation of the problem (1) - (8) is not complete. It must be added by an equation
for the dimension of the contact region. Usually the equation derived by Wagner (1932) is used,
but this equation is difficult to incorporate into a numerical scheme. We use here the equation
suggested by Korobkin (1996). The equation is, in fact, a modification of the classical Wagner
condition. It is

w/2
|7 wlett)sing, 948 = o, (9)
where the function y,(x,t) describes the shape of the beam with respect to the initial position
of the free surface. In the present case, yy(x,t) = 22/2 — ¢ + w(z, t), equation (9) gives

_ 1 9 2 /2 )
t= 1° + 7T]0 w(c(t) sin 6, t]d6. (10)

The problem (1) - (10) is solved with the help of the normal mode method. This method
leads to infinite system of ordinary differential equations with respect to the principal coordi-
nates of the beam deflection w(z,t).

2 Normal mode method

Within the framework of this method the beam deflection w(z,t) is sought in the form

0

w(z,t) =Y an(t)¥n(z). (11)

n=1

Here v, (z) are non-trivial solutions of the homogeneous boundary-value problem

d'dn 4

drt - }‘n"[}n (le < 1)7
d*yy, dipn s _
gz (FL EE—S(E]) =0, da(£1) =0,

where A, are the corresponding eigenvalues. Moreover, the eigenfunctions ,(x) satisfy the
orthogonality condition

[ 9 (@)m(@) do = o,
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where épm = 0 when n # m and 6,, = 1. Substitution of equations (11) into (6) - (8) and
solution of the hydrodynamical part of the problem (1) - (5) provide the following system of
ordinary differential equations

a oo
i (ol + S)"H(BDd + f), (12)
dd

Here @ = (a1,a9,0s,...)7, d is the vector d = (di,da,ds,...)T, dn = (BN Hatn + b,), f =
(f1(e), fa(e), fs(c), - . .)¥, I is the unit matrix, D is the diagonal matrix, D = diag{\%, M4, Py
The right-hand side of the system (12), (13) depends on @, d, ¢, but not on . Therefore, it is
convenient to take c as a new independent variable, 0 < ¢ < 1. Differential equation for ¢ = t(c)
follows from (10) and has the form

dt oo
’d‘é = Q(C, a),g’)7 (14)
where -
Q(C, d, C-i) — c+ (4“{'/7‘-)(01—: f(c))’ (15)
2 — (4x/m)(@, T(c))
w/2 ) /2 , . )
Cp(e) = /o Yn(csin 8)do, Cpe(e) = /0 Y, (csin 0) sin 6d6.
Multiplying equations of system (12), (13) by dt/dc and taking (14) into account, we get
di =, o« oa
—d_c' = F(Ca d)Q(C, a, F(C’ d))7 (16)
94 Qe d, Fle, d)), (17)
dc
where F(c,d) = (al + kS(c))~}(BDd + f| (¢)). The initial conditions are
=0, d=0, t=0 (c=0) (18)

The system (16), (17) is suitable for numerical evaluation. Indeed, for small times we have
c(t) = O(tY?), w(z,t) = O(t¥?), w, = O(t'/?), wy = O(t~*/?), and therefore, one cannot start
numerical calculations for system (12) - (14) with homogeneous initial conditions. Difficulties
with initial conditions for system of differential equations with respect to principal coordinate
an(t) and their derivatives a,(t), where the time ¢ is taken as the independent variable, are
described by Kvalsvold end Faltinsen (1993). On the other hand, t = O(c?), w = O(c®), w; =
O(c), wy = O(c™!) as ¢ — 0, and there are no problems with initial conditions for system (14)
- (17). .

Initial value problem for the edge impact is similar to (14) - (18) but elements of the system
are different. Moreover, the derivative dt/dc can become large (the speed of contact region
expansion is small) at some moment ¢; of the impact stage. In this case we need to return to
system (12), (13) as t ~ t;.
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3 Numerical results

The initial-value problem (14) - (18) is solved numerically by the fourth-order Runge-Kutta,
method with uniform step Ac. The condition that the numerical scheme is stable was derived.
The step Ac has to decrease as O(N~2) if the number of modes N taken into account increases.

Main part of the calculations were performed for simply supported beam (k = 0). Central
impact was analysed for the case L = 0.5m, R = 10m, h = 2cm, E = 21- 10'°H/m? V = 3m/s,
o = 1000kg/m?3, g, = 7850kg/m?® b = 0.5m, where g is the beam density and b is the
beam width. This gives @ = 0.314, # = 0.311. The number of 'dry’ modes N taken into
account is equal to 15. The speed of the contact region expansion was found to be positive
and bounded as ¢ > 0. Numerical results are compared with both the Wagner approach and
the Karman approach for the estimation of the wetted size of the beam. It was found that the
simplified approaches do not provide appropriate approximations of the speed of the contact
region expansion. Bending stress peaks close to the end of the impact stage and its maximum
value is 140N/mm?. One-mode approximation, N = 1, does not give correct information about
evolution of the bending stresses, but maces it possible to estimate their maximal value.

Edge impact is analysed for a = 0.157,3 = 0.04. It was revealed that the speed of the
contact region expansion is not uniform and takes its minimal positive value at distance 1.2L
from the impact point. After that the speed grows beyond all bounds before the beam is totally
wetted. This means that acoustic effects have to be taken into account at the final phase of
the impact stage. The hydrodynamic force tends to infinity as dc/dt — oo, where c(t) is the
dimension of the contact region. This effect, which was not revealed for central impact, is
referred to as blockage. It is assumed that the parameter (8, which is the dynamical rigidity of
the beam, is responsible for this effect. The calculations were performed for 8 = 0.02, 8 = 0.04
and (3 = 0.06. It was found that small variations of (3 lead to significant changes of the process
evolution. When a half of the beam is wetted, the speed dc/dt becomes negative and the wetted
area starts to decrease for 8 = 0.02. This phenomenon may be responsible for cavitation effects
and the beam ventilation. In the case § = 0.06 the speed dc/dt is positive and bounded as
¢ > 0, and the hydrodynamic force is bounded at the impact stage. Comparison of central
impact and edge impact for the same values of the parameters «, 3 shows that at the end
of the impact stage the beam deflections and the distributions of the bending stresses differ
significantly.

If k£ # 0 the calculations were performed for the central impact only. It is shown that the
conditions of simply supported beam, k¥ = 0, can be used to estimate bending stresses near the
beam centre.

The numerical results demonstrate that at least five modes have to be taken into account
to derive the initial data for the penetration stage of the impact. It should be noted that the
present approach does not require supercomputers. The computer program, which was used for
the calculations with 15 modes, takes about 30 minutes of computer time in a PC-486(66MHz)
computer.
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