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1. Introduction

The present note is concerned with a tandem of horizéntal cylindrical bodies moving forward
with constant velocity U in the free surface of an inviscid, incompressible fluid under gravity.
The resulting fluid motion is described by the linearized water-wave theory (the corresponding
boundary value problem is usually referred to as the Neumann-Kelvin problem). For a totally
submerged body in the fluid of infinite depth Kochin (1937) and Vainberg & Maz’ya (1973)
had given almost exhaustive mathematical theory of this problem. The case of surface-piercing
bodies is much more complicated. A number of significant results have been obtained for this
case by Ursell (1981), Lenoir (1982), Kuznetsov & Maz’ya (1989), Kuznetsov & Motygin (1995),
but a lot of questions still remains unsolved for it.

Treating the special case of semi-submerged circular cylinder Ursell (1981) found that the
Neumann-Kelvin problem has a two-parameter set of solutions. He proposed two conditions
complementing the original problem to make it well-posed (uniquely solvable for all values of
U with possible exception for a sequence tending to zero). The corresponding “least singu-
lar” solution gives a bounded velocity field near corner points. This result was generalized by
Kuznetsov & Maz’ya (1989), who proved that the least singular statement is well-posed for an
arbitrary contour having non-acute angles with the free surface. A number of other supplemen-
tary conditions appeared in Lenoir (1982), Kuznetsov & Maz’ya (1989), Motygin & Kuznetsov
(1995) and Kuznetsov & Motygin (1995). The “resistanceless” supplementary conditions con-
sidered in the last paper provide that the total resistance (a sum of wave resistance and spray
resistance) vanishes for a surface-piercing tandem.

Recently Mclver (1996) demonstrated the existence of a non-uniqueness example for the 2D
sea-keeping problem. She applied the so-called inverse procedure for simultaneous construction
of two surface-piercing bodies and of the potential of mode trapped by these bodies. Here
we use the same method for the Neumann-Kelvin problem. Actually, our example delivers
non-uniqueness to two statements of the problem, namely, to the least singular and to the
resistanceless statements for a surface-piercing tandem.

2. Statement of the problem

The geometrical notations are given in figure 1.
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Figure 1

Assuming that the fluid motion is steady-state in a coordinate system attached to the tandem
we describe it by a velocity potential u, which must satisfy the boundary value problem:

Viu=0in W, uge+vu, =0o0n FoUF, UF_, Qu/dn=Ucos(n,z)on S US_, (1)
limg_ 100 |Vul = 0, sup{|Vu|: (z,y) e W\ E} < oo, [ynp |Vulfdedy <oco. (2)
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Here v = g U~2, where g is the acceleration due to gravity; Sy denotes an open arc lying in R?

and F is a compact set in RZ , containing D_ U Dy with contiguous parts of Fy, Fy and F_.
The last condition in (2) allovvs to avoid strong singularities at the corner points Py, k =
1,2,3,4, because according to Kuznetsov & Maz’ya (1989)

C + Bp™/*8 sin(n0/28) + Apcos(f — a) + O(p'+?) when 3 > 7/2,
C+ Blplog psin — p(0 — 7 /2) cos 8] + Apcos(d — o) + O(p'*®) when B =17/2, (3)
C + Apcos(0 — a) + O(p*9) when 8 < 7 /2.

as p — 0. Here (pi, 0) are polar coordinates with a pgle at P, and (—1)*- i directed along the
polar axis. The angles 6, 5 (03,4) are measured counterclockwise (clockwise) and 0 < 6;, < S.
The subscript k indicating the dependence of variables, coefficients and § > 0 on P, is omitted.

If B > n/2 and By # 0, then the velocity vector Vu is singular when approaching P
along all non-horizontal directions. However, u, has finite limits along the z-axis which will be
denoted by ug(P). Following Ursell (1981) we say that u satisfying (1), (2) is the least singular
solution (solution to Problem (L)) if every By = 0 in the asymptotics (3) for u.

Let us turn to the resistanceless statement of the Neumann-Kelvin problem for a tandem.
We remind that any solution to (1), (2) has the following asymptotics as |z| — oo:

u(z,y) = C + Qlog(v|z|) + H(—z)e"¥(Asinva + Bcosve) + P(z,y). (4)

Here z = x + 2y, C is an arbitrary constant, H is the Heaviside function, and the estimates

Y = O(|z]7), [V| = O(]z|7?) hold. The constants @ and A are determined by

0
0+ St it <[ 2
+ sOn
_é — J [ 9 (e”y cos yx) - ?—gevy cos V:c] ds + Z:E[Z/—lua,(a:, 0) cosvx + u(w, 0) sin Vw]mfi*,
2 On on n r=at

where ¥, means summation of two terms. The last formula with cos and sin replaced by — sin
and cos respectively gives the coeflicient B.

Let u satisfy (1), (2), and let the following supplementary conditions A4 = 0, B =
uy(Py) = ug(P2), uy(P3) = uy(FPs) hold. Then we say that u is the resistanceless potential
(solution to Problem (R)). The term resistanceless becomes clear if we take into account the
formula expressing the total resistance to forward motion (see Motygin & Kuznetsov (1995)):

R =LA+ BY) — L, 05 + (e, 0BT

where p is fluid’s density.

Using the source method proposed by Kuznetsov & Maz’ya (1989) one can prove that
problems (L) and (R) (with an arbitrary right hand side in the Neumann condition) are solvable
for all v > 0 with possible exception for a discrete sequence of values (own for each problem).

3. Non-uniqueness examples

For construction of examples we use the inverse procedure, which replaces finding a solution
to a given problem by determining physically reasonable fluid region for a given solution. We
define the latter with the help of Green’s function

- ®cos k ‘:10 -
G(2,0) = =5 Tog(liz = == D - 7 | €O K@ = &) kutn) qf — ) sin oz — £),

2r T k—v

which describes the forward motion of a source placed at ( = & + ¢n. Putting

u(z) = (7/v) [Galz,7[v) = Golz, =7/ V)], ()
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we obtain a solution to the problem (1), (2) for a surface-piercing tandem if at least one of the
streamlines of the flow connects the z-axis on either side of a dipole point and another streamline
similarly surrounds the other dipole point (we interpret these streamlines as contours of two
bodies). The streamlines are level lines of the stream function v, which is a harmonic conjugate
to u. We use the following representations:

_ (Fcosk(z+n/v)—cosk(z —/v)
v(2) = Jo k—v

e dk (6)

— Re {e—iuz [Ei(iv(z — 7/v)¥— Ei(iv(z + 71'/1/))]} )

where the second formula in terms of the exponential integral follows from 8.212.5, Ryzhik &
Gradshteyn (1980) Table of Integrals. The asymptotics of Ei implies that v(z) ~ % log |z +7/v|
as z — Fm /v. Thus, the streamlines enclosing the dipoles do exist for sufficiently large values
of v, and these lines are close to semicircles which are the level lines of log |z + 7 /v|.

The particular combination of dipoles (5) is chosen to cancel wave terms in the asymptotics
of u. The latter fact is an immediate consequence of the following formula

G(z;¢) ~ =1~ og(vz|) — 2" sin v(x — €) as & — —oo.

Therefore, u delivers a solution to Problem (R), because the second pair of supplementary
conditions in the definition of this problem is also fulfilled. Really, the direct calculation based
on (6) shows that v, — vv = 0 when y = 0 and = # £7/v, and hence, the derivatives v, = u,
have the same value at both end-points (belonging to the z-axis) of any streamline enclosing
oneof the dipoles.

Actually, u has no singular points on the z-axis except for +7/v. Hence, if fx > 7/2,
k=1,2,3,4 (see fig. 1 for definition of B;) for the streamlines which we interpret as bodies,
then u delivers a solution to Problem (L) as well. The latter is the case because we have

tan ﬂk = (——1)kuy(Pk)/ux(Pk) = (—1)k+lvw(Pk)/vy(Pk).

From this and from the behavoiur of derivatives shown on figure 3(a) one obtains that all angles
B are non-acute for the streamlines given by (6).

4. Discussion

A new type of non-uniqueness for the Neumann—Kelvin problem is described. The well-known
non-uniquness (see Introduction) is a consequence of sub-definiteness of this boundary value
problem for surface-piercing bodies, and occurs for all such bodies and all values of v. The
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Figure 2. Streamlines for v = 0 (bold line), 0.2, 0.4, 0.6, 1.0.
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Figure 3. a)v~lug(z,0)and v~ uy(z,0) (dashed line) are plotted against zv; b) shows stream-
lines for v = —0.5, —1.0, —2.0, —4.0 (dashed lines), v = 0 (bold line) and v = 0.2, 0.6, 1.0.

new type of non-uniqueness takes place only for special values of v depending on the geometry.
These values are point eigenvalues corresponding to modes of finite energy (known as trapped
modes) embedded in the continuous spectrum of the relevant pseudo-differential operator. The
latter spectrum is known to be (0, +o00).

We use a pair of horizontal dipoles for obtaining trapped modes, whereas Mclver (1996).
applies a pair of sources in her construction. The reason is that dipoles deliver an example
for two statements simultaneously. The potential generated by two sources gives an example
of non-uniqueness only for the least singular statement and cannot satisfy the second pair of
supplementary conditions in Problem (R).

There is no unique set of supplementary conditions vanishing the total resistance to the
forward motion of more than two surface-piercing bodies. At the same time, the least singular
solution can be naturally defined for any number of bodies. The corresponding non-uniqueness
examples can be easily constructed. In particular, the potential (5) delivers examples of non-
uniqueness for Problem (L) with 3 and 4 cylinders (see fig. 3(b) for the corresponding stream-
lines).
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DISCUSSION

Tuck E.O.: Could you explain why you are studying the Neumann-Kelvin
problem? This is a serious question, since there.are matters raised in the paper such
as singularities at the body-FS$ junction points, which relate directly to the question
of the practical relevance of the N-K problem. Although my own opposition to the
N-K problem is well known, it is possible that critics like me could be converted to
believe in it, if studies like this were motivated to explain these singularities, or to
use them as an outer expansion is a systematic approximation.

Motygin O., Kuznetsov N.: We consider the N-K problem as a phenomenological
model. The so-called full non linear problem is also only a model, because it
involves the assumption that the fluid motion is irrotational everywhere. However,
this is hardly true near body-FS junction points. Since the linear N-K problem
requires supplementary conditions, their choice can be used for an appropriate
phenomenological description of fluid motion near junction points. Different
supplementary conditions could be good for different ranges of the Froude
number.
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