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1 Introduction

Integral equation methods represent powerful alternatives in computation of potential flow
around geometries and bodies, where an important example is interaction between water
waves and floating bodies. Numerical implementation of the integral equation has often
been based on a low-order method, where the boundary of the geometry is subdivided
into piecewise straight lines in two dimensions or quadrilaterals in three dimensions. The
unknown potential or source-strength is assumed to be constant over each subdivision of
the boundary. For complex geometries like e.g. the wetted part of an oil platform, this
method leads to a large number of unknowns (n), if a reasonable accuracy of the potential
and the flow shall be obtained.

The rather extensive applications of the low-order method illustrate its power. It
is, however, desirable to investigate higher order integral methods which have features
not included in a low-order method: possibility of finding derivatives of the potential,
reduction of the number of unknowns and thereby the size of the matrices, fast convergence
of the method, and adaptivity. Another aspect relates to geometrical design. Most
practical geometries today are designed by advanced mathematical procedures, e.g. using
splines. It is therefore desirable to make available wave analysis tools which are based on
the same mathematical procedures as in the modelling of the geometry. The purpose is to
integrate efficient and accurate computations of the flow and forces in the design process.

We investigate wavelet and spline methods, which have rather different properties, see
Nygaard et al. (1996). One of the advantages of the wavelet method is the possibility
of performing compression of the coefficient matrix of the system. According to Beylkin,
Coifman and Rokhlin (1991), it is possible to devise an O(n) algorithm for certain integral
operators, where n is the number of unknowns. We test the methods on Fredholm integral
equations of the second kind. Preliminary results for the wavelet method show that the
order of convergence for the present integral operator depends on the geometry. We
compare the wavelet and spline methods. The latter method has, in the context of wave
analysis, been discussed by Lee et al. (1996).

For simplicity we assume two-dimensional motion and consider a half-immersed rect-
angular cylinder floating in a free surface, responding to incoming waves. Coordinates
(z,y) are introduced, with = being horizontal and y vertical. Assuming time harmonic
motion with frequency w, the potential is on the form ® = Re(xe“*), where ¥ satisfies
the Laplace equation in the fluid domain, dx/9y = Kx at y = 0 (K = w?/g), radiation
conditions in the far field and dx/dn = V,, at the contour S of the cylinder, n is the inward
pointing normal vector. From Green’s theorem we obtain the usual integral formulation
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2 The wavelet method - multiresolution analysis

The wavelet method is a Galerkin scheme with a basis which decomposes functions into
pieces of different frequency content locally in space. We expand a function f as

f=fotg+ag+ =D QA +D B +d dip+ - (2)
% % P

where the basis consists of the functions ¢? and I/Ji The subscript indices denote a
translation in space (k), and the superscript indices give the location of the frequency (j).
The translation in space is uniform, so the function is defined on a uniform grid. Where
the function is reasonably smooth, the frequency content will be concentrated. This means
that the coefficients corresponding to this particular localization in space will be dominant
for a few frequencies. Correspondingly, frequencies which are not so dominating will have
small coefficients. Depending on the regularity of the function and necessary accuracy of
approximation, a number of these coefficients may be discarded. This makes it feasible
to design an adaptive procedure for the solution of our problem, based on a hierarchical
structure of multiresolution analysis. In short, the term multiresolution analysis is coined
for the collection of nested approximation spaces spanned by the functions ¢ and .
For details on the multiresolution analysis, see e.g. Jawerth and Sweldens (1994). We use
the Daubechies wavelet basis indexed by the number N, as in Daubechies (1992). We use
N = 3 and N = 8. The scaling and wavelet functions for N = 3 is depicted in fig. 1.
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Figure 1: Scaling and wavelet function

202




3 Spline method

Using splines, we get the simplicity of piecewise polynomials, and for many applications,
the geometry will also naturally be defined by splines. This is the case for our examples.
The potential is represented by the linear combination of a number of B-splines B;, for
¢t =1,...,m. In our case, the knot-vector will always be a refinement of the knot vec-
tor for the geometry, but that is no requirement. A number of projection schemes are
appropriate to use, and we start by inserting the expansion x(t) = 37, x; B;(t) into the
parameterized integral equation. Collocation with five collocation points between each
knot gives an overdetermined system which is solved by a least-squares method. For the
Galerkin case we use the B-splines both as trial and test functions, and multiply (1)
(after parameterization and application of the spline-expansion,) by B;(t) for all i, and
integrate along the contour. This leads to a square system of exactly m equations.

4 Numerical results

We have implemented the methods and compared them with respect to accuracy (L2-
error) and the corresponding number of non-zero matrix elements of the linear systems.
The problems are well conditioned, and the systems can be solved by an iterative method
utilising only matrix-vector multiplications, with a constant number of iterations.

Our results show that

o The wavelet method results in a matrix which may easily be compressed, resulting
in a very sparse system yielding an accurate solution.

e For smaller problems, or when high accuracy is not needed, a spline implementation
will be both simple and efficient.

e For larger problems, e.g. when the geometry is complicated or a high degree of
accuaracy is needed, an efficient implementation of the wavelet method will be able
to outperform the spline method.

We show an example for the case of a square cylinder in the long wave approximation
(K =0) in fig. 2. The figure illustrates that large parts of the coefficient matrix in the
wavelet method may be discarded, and that a higher accuracy is obtained in the wavelet
case than in the spline case. In this particular example we also compare with analytical
results by using the Schwarz-Christoffel transform. We find convergence, also at the
corners of the square cylinder. Further results, for different wave frequencies, will be
presented at the workshop.

203




Basis=3 J=3,...,6 Geometry=boksd Compr.method=threshold

107

©

Non-zero matrix elements
(o]

102

R RERECERE LR R R R R AR SRS R PR R RRRERERREE IR RN [IERESET (RARER R REERRTRRE T

10

107° 1072
L2-error

Figure 2: Accuracy of potentials for half-immersed square cylinder, surge motion, no in-
coming waves. K =0. Solid line: spline-Galerkin solution with quadratic splines. Dashed
and dotted lines: wavelet solutions, basis N =3, varying degrees of matrix-compression.
The number of unknowns before compression is 2’/t!, J = 3,4,5,6. Horizontal axis: L?
error (accuracy). Vertical axis: Number of non-zero matrix elements in the linear system.

References

BEYLKIN, G., COIFMAN R. AND ROKHLIN, V. Fast wavelet transforms and numerical
algorithms i. Communications on Pure and Applied Mathematics, XLIV:141-183, 1991.
DAUBECHIES, I. Ten Lectures on Wavelets. CBMS-NFS Regional conference series in
applied mathematics. STAM, Philadelphia, Pennsylvania, 1992.

JAWERTH, B. AND SWELDENS, W. An overview of wavelet based multiresolution anal-
yses. SIAM Review , 2, 36(3):377-412, Sept. 1994.

LEg, C.-H., MANIAR, H., NEWMAN, J. AND ZHU, X. Computations of Wave Loads
Using a B-Spline Panel Method. 21st Symp. on Naval Hydrodynamics , Trondheim,
Norway, 1996.

NYGAARD, J. O., GRUE, J., LANGTANGEN, H. P., AND M@RKEN, K. On adaptive
spline and wavelet methods for an integral formulation of inviscid flow. To be published,,

1996.

204




DISCUSSION

Huang J.:

1) Normally, when a function f(x) is expanded in wavelet space, it is expanded in
one wavelet space {V,,}, i.e. at scale m. Why did you expand f(x) (as shown in
eq. 2) using different {V,,} and superimpose them?

2) You showed the results of potential derivative, did you involve the direct
evaluation of wavelet in your computation? The derivative of Daubechies wavelet
is highly oscillated.

Nygaard J.O., Grue J.:
1) The functions decomposed into multiresolution analyses are indeed decomposed
only in one space V; (a space spanned by translates of the scaling function ¢,

but it is then decomposed further into the wavelet spaces (spanned by translates
and dilations of the actual wavelet ) W, for j=J,,....,J =2,J -1, together with a

remainder in V,. Here, V; = Uf;(}ufj V. (Note that Vj is just a convenient way of
denoting the coarsest space where the sequence of nested spaces is truncated.)

2) No, the direct evaluation of the scaling function ¢ or the wavelet function
were not used at any stage. The Daubechies wavelets (and scaling functions) are
indeed highly oscillating for large N, and they are not very smooth for small N.
This carries over to the derivatives of the functions, but we note that there are
Daubechies bases with arbitrarily smooth scaling functions avd wavelets, and
therefore also arbitrarily smooth derivatives. However, there is a connection
between the smoothness and the oscillatory behaviour. (As well as length of
support, length of discrete filters and so on, so any choice of N will be a
COmMpromise.)

When, for final plots and other uses of the functions expanded in the wavelet
bases, evaluations are needed, the recursive refinement scheme (also denoted the
pyramid scheme,) gives a stable and efficient way of obtaining large numbers of
evaluations of the functions. This applies also to the more irregular of the
Daubechies bases.

Magee A.:

1) In the compression method, you must search through the matrix to find the
smallest value. Is this a significant computational burden?
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2) Your results for the spline method seem to indicate that the results are improved
with higher discretization (that is, the irregular behaviour is reduced for finer
discretization). But is the exact (theoretical) irregular frequency equal to one of
those used in the calculations? Have you checked frequencies nearby to be sure
you are not missing the most irregular behavior of the numerical solutions which
may change as a function of the discretization?,,

Nygaard J.O., Grue J.:

1) Yes, this is a burden in our implementation. However, this is done in this
particular way because we have wanted to investigate whether or not the wavelet
method will be able to compete with methods based on splines before putting
effort into developing more efficient code. For an efficient implementation, larger
portions of the elements to be discarded in the compression process have to be
predicted without their actual computation.

2) Irregular frequencies are always present in the formulation, however, for a
successively finer discretization of the spline knot vector, we find that the ill-
behaved frequency domain is reduced. We shall look into more detail regarding
the dependence of the observed irregular frequencies on the discretization.
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