Georg Weinblum Special Meeting
19-20 March 1997

A Special Meeting was held after the Twelfth Workshop to celebrate the 100th
anniversary of the birth of Georg Weinblum. Professor Weinblum was an
international leader in ship theory. He inspired a generation of colleagues,
including several who are still active participants in the Workshops. For this reason

it was felt that the anniversary celebration should be held in conjunction with the
Twelfth Workshop.

Since Weinblum's death in 1974, a series of Memorial Lectures have been
presented on an annual basis (the list is given at the end of this volume). All of the
former Lecturers were invited to participate in the Special Meeting, and to present
lectures. Thirteen among them contributed. Titles of their presentations and short
written abstracts are given in the following pages.
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Stagnation Points

K.]J. Bai', C. W. Dawson?, ].W.Kim?, and J. V. Wehausen®

A rectilinear potential flow about a circle in the plane or about a sphere
in three dimensijons results in two stagnation pomts, one at each end of a
diameter. For any bounded simply connected region in the plane it follows
from Riemann’s Mapping Theorem that there is an analytic function
mapping the exterior of the unit circle into the exterior of the region and
behaving like a rectilinear flow at infinity. Hence there are only two
stagnation points on the boundary of the region in question. Although
harmonic functions in three dimensions share many properties with analytic
functions in the plane, there is no analogue of the Riemann theorem. In fact,
there is only a very restricted set of transformations that preserve the property
of being harmonic (see, e.g., Kellogg, Foundations of Potential Theory , 1929,
pp. 235-236). It is natural to ask whether there can be more than two
stagnation points in a potential flow about a bounded simply connected body
in three dimensions. The question is raised in Kellogg (ibid., pp. 273-277) but
not really answered. Itis shown in Kellogg (p. 273) that there cannot be a
continuous surface distribution of stagnation points (unless, of course, the
potential function is constant). On the other hand, one knows that there can
be continuous linear distributions of stagnation points if Laplace’s equation
can be separated in a particular coordinate system, as in ®(x,y,z ) = @(x,y)Z(z)
with Z(z) = const. or ®(r, 6, z) = R(r)0(8)Z(z) with © = const. One might be led
to conjecture that any continuous line of stagnation points must be
associated with a coordinate system in which Laplace’s equation may be
separated. =~ However, the following is a counterexample (JWK) to this
conjecture:

D(xy,2) = (112X y* - (1/2)6¢ + y)2* + (1/6)2",
for both the x-axis and the y-axis are lines of stagnation points.

A discussion by one of us (JVW) with Charles Dawson in June 1978
concerning the possibilities of multiple stagnation points resulted in a letter
from him dated 28 June 1978 describing his investigation of a 3-dimensional
body generated by two dipoles of equal moment situated on a line
perpendicular to an oncoming steady rectilinear flow. As is well known,
when the separation of the dipoles is zero, one streamline will generate a
sphere with stagnation points at opposite ends of a diameter. Dawson
correctly predicts the dipole separation at which each of the two stagnation
points will begin to separate into three stagnation points, and also the
1 Seoul National University, 2 Formerly, David Taylor Model Basin,

* University of California at Berkeley
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(further) separation at which the single body will divide into two bodies. In
addition, he computed the positions of the stagnation points lying on the
central streamline as long as there is only one body.

Dawson died in January 1980 without having published any details
concerning his calculations. In the present paper we present not only the
analysis and computation necessary to substantiate Dawson’s results, but also
other relevant details accessible by exploiting modern computational
capabilities, especially Mathematica. In addition to the 3-dimensional
problem, we also treat the analogous 2-dimensional problems for two dipoles
and for two vortices. The analysis and the computation for these are simpler
than for three dimensions, in particular, because of the presence of a stream
function, but the results are relevant both for their similarities to and their
differences from the 3-dimensional case.

The qualitative difference between two and three dimensions is

chiefly a result of the following facts. Let ® be the velocity potential, in either
two or three dimensions, of the rectilinear flow in direction Ox about two
dipoles at a distance 24 apart and perpendicular to the oncoming flow. In

two dimensijons ®,, and ®, vanish together at the two stagnation points
associated with the largest separation a before a single closed stream body
splits into two bodies, with, of course, two stagnation points on each. In three

dimensions, however, @, =0 at a stagnation point associated with a smaller

value of a than that at which ®_ =0, which again occurs at the largest value
of a Dbefore the single closed stream body divides into two bodies. It is

shown, however, that @, >0is associated with the presence of two further
stagnation points with 'y = 0, so that there exists an interval of dipole
separations for which there is only one closed stream body but three
stagnation points on each side. Furthermore, there exists an interval of
separations for which ® > ®,, >0, and this implies that the single body is
not smooth at the waist, i. e. at the intersection of the stream body with the
plane perpendicular to and bisecting the line joining the two dipoles. In two
dimensions this nonsmooth behavior can occur only at the “last” single body

when ®,, =¢, =0, the only separation at which ®,, and @, are equal.
The following two pages show graphs illustrating the differing

behaviors for different separations, both for two-dimensional vortex and
dipole pairs and for three-dimensional dipole pairs.
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Traces in the first quadrant are shown for the closed streamlines generated by
two vortices (on the left), all of the same strength, and by two dipoles (on the
right), all of the same moment, but at different spacings, indicated in each case by
the value of a. For the vortex pair the largest value of a before two separate
bodies are formed is a =2, for the dipole pair this value is a = 1/2. In each case

this is the value of a associated with ®_ = 0. The value of a at the boundary
between convex and concave behavior at the stagnation point is a = 3/2 for the
vortices and a = 0.455 = [(2'/? - 1)/2]V? . In each case this is the value of a

associated with @ =0 at the stagnation point.
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Two dipoles in space

Traces in the first quad-
rant of the (x, y)-plane
of the streambodies gen-
erated by two dipoles,

all of equal moment but
with different spacings,
as shown by the value
of a. All streambodies
are bodies of revolution
about the y-axis and are
symmetric about the

(x, z)-plane.

In the first four traces there is a single stagnation point, on the x-axis, in the
quadrant shown, and hence one on each side of the streambody. The separation

a =0.63033, corresponding to ® =0, is the largest value of a for which there is

only one such stagnation point. The value a=0.53517, corresponding to ®

=0

xXyy

at the stagnation point, is the boundary between convex and concave behavior of
the streamsurface at the stagnation point. The last four traces, for which 0.63033
< a =< 0.73972, all show a second stagnation point at y > 0, hence three on each
side. At a=0.71236 ®,, = ®,, at the stagnation point, and the streamsurface has a

corner at the (x ,z)-plane. For a>0.71236 this corner becomes an inward-pointing
cusp. The largest value of a before the streambody splits into two is a =0.73972.
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An Integral Representation of a Wave Function
in the Theory of Wave Resistance of Ships

By Masatoshi Bessho

The kernel function of a singurality in the theory of wave resistance of ships is usually
represented by a double integral, but it was shown in the memoirs by the author that
the kernel function has a single integral representation which faciliates numerical works
exeedingly®).

However, the analysis of the memoirs is somewhat obscure and may have some errors.
In fact some authors have indicated the errors in the formulas in the memoirs®»4%),

In the present paper the integral representation of a wave function is reanalyzed and
revised.

A function which is treated here is as follows ;

1 roo ' .
P—l(w’yaz) = Re. |:§ [-oo ef(t)dt] s (1)

where
f(t) = ixzcosht—iysinhtcosht — zcosh’t,
= 4xcosht — pcoshtcosh(t + ta),

and p = V42 + 22, tana=y/z.

(2)

Then, since we have an integral

e—pcoshz(t+ia/2) _ 1 /_O:o e—%f;—ivcosh(t+'ia/2)dv, (3)

2./mp

inserting this in equation (1) and shifting the path of the integration in the t-plane yields

—2)/2
P_i(z,y,2) = elP=A/2 - poo e’gdv/w giRcosh(t+ia/2—it) gy (4)
- i 41/71'/) —00 —00
where

zsin(a/2)
zcos(a/2) —v’

R = /22 +v* — 2zvcos(a/2), tany = (5)

Making use of the integral representation of Bessel function of the second kind
1 foo
YE)(R) — __/ echoshudu, (6)
T J—00

We obtain the following formula :
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e(p_z)/2
4,/p/m

This formula is correct in the following special cases, that is,

Po(z,y,2) = — i °:° e EYo(B)dv = I 1)
PA(0,3,2) = 3¢ Kalp/2), 0

P-1(2,0,0) = —3 Yo(a), (©)

but does not contain a divergent wave component and is not correct in general. Moreover,
equations (8) and (9) are special cases of the following expansions®.

P_1(z,y,2 e~/ Z 1)"enKn(p/2)Jon(x) cos na, (10)
n=0
P_i(z,y,2) = ——e —=/2 Zen p/2)Yan(z) cos na, (11)
n=0

Equation (10) is convergent and gives a correct value in the range of a moderate
x2/(4p) value but it is not convergent numerically when the value largely increases.

On the other hand, equation (11) is not convergent but is an asymptotic one. Some
authors have discussed its defect which does not give a divergent wave component.

In these circumstances, the present paper aims to revise equation (7).

Now, we evaluate equation (4) using the path of the integration in the #-plane as shown
in Fig.1 where the angle 1 takes zero at negative infinity of v and tends to w at positive
infinity.

However, the horizontal line 47/2 in the ¢-plane is singular for the integrand of the
integral, so the pass cannot cross the line 47/2 which causes the error.

Hence, the absolute value of this angle 1 must be confined within 7/2 in order to
correct this point.

Now, if the value of v is complex in equation (4), the argument of the potential term
of the integral becomes as follows refering to Fig. 2.

Rcosh(t + ia/2 — i) = Re™ cosh(r + t + ia/2 —iv), (12)
where
R=/rirs, €™ =/ri/rs, (13)
01 + 02 01 - 92
: = = 14
=% 5 =Y (14)

Moreover, if we choose the path of the integration as shown in Fig.3 where ~ takes
zero from negative infinity of v to the point B and takes —m from B to positive infinity,
the dotted line in Fig.1 becomes the solid line which has a jump at A,B,C.

Thus, we obtain the same form as equation (4), but the argument of Bessel function
of the second kind in the integrand must be multiplied by exp(—ir).

Since we have the relation v

Yo(Re™™) = Yo(R) — 2iJo(R), (15)
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The real part becomes the same as the integral (7) but we must add the integral on
the path A,B,C in Fig.3 where Y cancels out with each other but Jy remains.
Therefore, equation (4) can be rewritten in the following form.

P_1(w,y,z) = 11 + 12 (16)

where I; denotes equation (7) and I is the term to be added. Making use of equation
(12) through (15), we obtain I as follows ;

I ) -2 [ % - ar
Ig—Re.[ 2\/7r/p><e A e JO(R)dv}, (17)

where A=zxcos(a/2) , B= ze®/?,
or
1 « 1 2
= ~ (P=2)/2 10 cipy — -5
I = Re. [Q\M/Pe” xsin 2/0 et Jo(R)du], (18)

where v = zcos(a/2) +iursin(a/2) , R=zv1—u’sin(a/2),

Now, we examine the result equations (16) and (17) in the following manner. Firstly,
when x becomes zero, then I, vanishes clearly, and when both y and z tends to zero, then
I, vanishes owing to the exponential term of the integrand of (14) or (15). Therefore, the
formulas (8) and (9) are correct.

Secondly, let us consider an asymptotic character of the integral. We can integrate
asymptotically as follows.

00,2 2 o2 2
/ e Hwdy — Pe %, for |=|>1, (19)
a a 4p
Then, we can evaluate the integral approximately for small p as follows.
-z 12 iy Hm—a)
I, — Re. [__pr R il | (20)
4z
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SOME UNEXPLORED ASPECTS

OF HYDROFOIL WAVE DRAG

J. P. Breslin

A brief recounting of the milestones in the development of hydrofoil craft from
the end of the last century and ending with the vessels built by the US Navy
is given. An account of the evolution of theory for invicid flow about hydrofoil
sections and the extension to finite aspect ratios is followed by three applications
of lifting line theory to a foil tested at in a model basin.

The wave resistance of an aspect ratio 10 hydrofoil as inferred from analysis
of lift and drag measurements is compared with results of lifting-line theory for
infinitely deep water, for the depth of the towing tank and for a channel of the
same width and depth of the test basin. The poorest correlation is obtained for
the latter condition. Suggestions for additional work on hydrofoil lift and drag
are given.
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SLOSHING IN TWO-DIMENSIONAL TANKS

O.M. Faltinsen
Division of Marine Hydrodynamics
Norwegian University of Science and Technology
N-7034 Trondheim, Norway

F. Solaas
MARINTEK, P.O.box 4125 Valentinlyst
7002 Trondheim, Norway

1. INTRODUCTION

Environmental concern has lead to requirements about double bottoms and skin in new tankers. Since
it is desirable to save steel, this has lead to wide oil tanks that can be smooth inside. This increases the
danger of occurrence of sloshing and large slamming loads inside the tanks. The most violent fluid
motions occur in the vicinity of the lowest natural period for the fluid motion inside the tank. When the
tank is smooth, viscous effects are not important and potential flow theory can be used. Nonlinear free
surface effects are significant. However, ship motions exciting sloshing are often not large. This means
that the external hydrodynamic loads can be approximated by linear theory. However, the coupling
between the external linear flow and the internal nonlinear flow should be considered.

There exist commercial CFD codes based on Navier-Stokes Equations and nonlinear free surface
conditions that are used to simulate sloshing. A difficulty occurs in describing simultaneously the
slamming loads inside the tank. A reason is the much smaller time scale of slamming relative to the
characteristic sloshing period. Hydroelasticity may also complicate the simultaneous solution of sloshing
and slamming loads.

The complexity of the sloshing flow can easily lead to inaccuracies in the numerical solution. Good
verification procedures is therefore of great importance. This paper describes a verification procedure
of a nonlinear numerical method for sloshing.

2. THEORY

The method is based on Moiseev’s (1958) perturbation method. Details are described by Solaas (1995)
and Solaas and Faltinsen (1997). The forced sway or roll motion of the tank is 0(¢) and the fluid
response is 0(e'?). Here ¢ is a small parameter and a measure of the ratio between the tank motions
and the horizontal dimensions of the tank. Non-shallow water depth and two-dimensional flow are
assumed. The tank oscillates with frequency w and a steady-state solution is found. The lowest natural
frequency o, for the fluid motion is related to w by

w? = 0? + g2Bg (1)

where o = 0(1). The total velocity potential for the fluid mbtion is expressed as
(I)T = ¢181/3 + ¢282/3 + (])38 + (‘I)C(x,y)cos(,ot (2)

where ¢, is of O(¢), satisfies the body boundary condition, but not the free surface condition. Further
t is the time variable. The solution of d)1 can be written as Llrl(x,z) Ncoswt, where Y, is the
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eigenfunction for the fluid motion corresponding to the natural frequency 0,. N is determined by a
secularity condition in the 3.order solution. ¢, (and ¢, and ¢,) are determined by a low order panel
method based on representing the velocity potential by Green’s second identity. The second order
potential ¢, satisfies an inhomogeneous free surface condition which is a function of ¢, and follows

by the perturbation scheme. The normal derivative of ¢, on the mean position of tank surface is zero.
The solution can be written as

0 2 .
b, = af + D, x)d " sin2w) 3)

n=1

Here 1, are eigenfunctions for the fluid motion corresponding to eigenfrequency number n. o is a
constant and determined by conservation of fluid mass. It follows from this requirement that the
perturbation scheme is only possible with vertical walls at the mean waterline. The third order potential
¢, satisfies an inhomogeneous free surface condition which is a function of ¢,, ¢, and ¢_. The
normal derivative of ¢, on the mean position of the tank surface is zero. The right hand side of the free
surface includes a term proportional to  ,coswz. This leads to a secularity condition that determines
N as the solution of

aN?> +oN +e =0 4
This means that up to three solutions of N is possible for any frequency w.
3.  VERIFICATION

Faltinsen (1974) derived an analytical solution for a rectangular tank based on Moiseev’s procedure. This
was used by Solaas (1995) and Solaas and Faltinsen (1997) to compare all details of the first, second
and third order solution. It was found that many elements were needed in the low order panel method.
For instance with 500 elements evenly distributed on the mean free surface, the third order potential
oscillating with frequency 3w have relative error of 0(107%) on the free surface element closest to the
intersection between the near body surface and the mean free surface. This verification of the numerical
method demonstrates that great care has to be shown in the numerical analysis.

4. CONCLUDING REMARKS

High numerical accuracy is needed in a numerical method describing sloshing in a tank.

A perturbation solution based on Moiseev’s procedure can only be used for tanks with vertical
walls at the mean waterline.

A perturbation solution based on Moiseev’s procedures seems difficult to generalize to irregular
sea.

Sloshing and sloshing induced slamming have very different time scales, which makes an integrated
analysis difficult. A possibility may be to generalize the hydroelastic slamming theory described by
Faltinsen (1997).
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The CHAPMAN Project

Development of a New Navier-Stokes Solver

with a Free Surface

Prof. Lars Larsson

Chalmers Univ. of Technology
Dept. of Naval Architecture and Ocean Engineering

As shown in the 1990 and 1994 Workshops on hydrodynamics CFD the CFD technique may
now be used for many practical purposes in ship design. Several obstacles remain however, as
explained in the 18th Weinblum memorial lecture by the present author. The accuracy needs
to be improved in resistance prediction and in the computation of the details of the wake field.
To accomplish this, improvements may be necessary in the following areas: grid generation,
turbulence modelling, free surface boundary conditions and numerics.

CHAPMAN is a cooperative project between Chalmers and FLOWTECH International for
developing a new Navier-Stokes solver with improvements in all four areas above. The method
uses a structured multi-block overlapping grid generator CHALMESH, developed within the
project. Thin curvilinear component grids are employed near the hull and all appendages, and
these component grids are embedded into a global Cartesian grid. CHALMESH takes care of
the interpolation in the overlapping regions. Singularities are avoided by introducing separate
component grids around singularity lines. The propeller is represented in a cylindrical compo-
nent grid, which rotates inside the hull grid and this will enable the blade flow to be computed
when the propeller rotates in the behind condition.

The solver has a free surface capability based on the level set approach, which is capa-
ble of handling overturning waves and changes in topology, like when the wave breaks. The
Reynolds-averaged Navier-Stokes equations are solved with an advanced turbulence model, and
several alternatives for this model are now being tested for some generic test cases. A mixed
explicit/implicit temporal solution scheme is under develoment where the implicit technique is
used only in the normal direction in the thin curvilinear grids.In this way the small time steps
required in the explicit technique due to the very thin cells close to the hull surface are avoided.
To minimize numerical dissipation central differencing is used for all terms and the minimum
amount of artificial dissipation needed to stabilise the solution for the given grid spacing is com-
puted from a theory for the smallest scales by Henshaw and Kreiss. Alternatively, the theory
may be used for finding the required grid spacing for stability without artificial dissipation.
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50 YEARS OF YOKOHAMA NATIONAL UNIVERSITY
SHIP HYDRODYNAMICS LABORATORY
BY
HAJIME MARUO
YOKOHAMA NATIONAL UNIVERSITY

Eoreword

In the occasion of the 100th anniversary of the late Professor Georg Weinblum, 50 years of the
research activities at Ship Hydrodynamics Laboratory of Yokohama National University, of which
I have been in charge since 1947 until my retirement in 1988, is reviewed briefly.

This topic has much relevance to the memory of Prof. Weinblum, because most of the projects
carried out in this laboratory have been motivated or stimmulated more or less by his work,

especially at their earlier stage. I studied one of his earliest paper published in 1930 on ZAMMYD
in 1944 when I was a student of University of Tokyo, and I was much impressed by his work. This
experience had become obviously the motivation of my first work on the study of planing hulls.
Another example of his influence is through the work on the hull form of minimum wave resistance
which was seemingly the subject of Weinblum's main interest.

The first time when I met Prof. Weinblum was in 1963 in the occsion of International Seminar on
Theoretical Wave Resistance at Ann Arbor Michigan. My great surprise at that moment was that
he had already known my earlier work. I still remember his encouragement through the work on
the wave resistance of slender ships, which [ was engaged in at the moment. Since thattime, [ was
able to keep contact with him through the technical committee of ITTC until his death. Therefore
the influence from him may appear throughout the period.

The Ship Hydrod ics Lat

Ship Hydrodynamics Laboratory of Yokohama National University belongs to the Department of
Naval Architecture and Ocean Engineering, which was founded in 1930 as a part of Yokohama
College of Engineering founded in 1920. The College was shifted to Yokohama National
University in 1949 by the reformation of the educational system. The university moved to a new
campus in1976. Main research facilities of the department is as follows.

Towing Tank:
Old Campus (1933 -1976) L X B X D=504m X 3.6m X 2.75m
New Campus (1976--- ) L X B X D=110m X 8.0m X 3.5m

Other Facilities:
Circulating Water Channel
Wind Tunnel

On my retirement from Yokohama National University in 1988, Prof. Mitsuhisa Ikehata has
succeeded to the position in charge of the laboratory.

Outline of R Proj
Subjects of the research projects carried out at the Ship Hydrodynamics Laboratory since 1947
are listed below in time sequence. Numbers in parentheses indicate the year when the first paper on

the subject in each project was published, and the superscript gives the corresponding literature.

Hydrodynamics of Planing Hulls:
Two Dimensional Problem

Theory of Resistance Components, Spray and Wave (1947)2)
Pressure Distribution , Analytical Solution (1951)3)
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Three Dimensional Problem
Resistance Components ( 1949)4)
High Aspect Ratio Approximation (1953)>)
Low Aspect Ratio Approximation (1962)6)

Nonlinear Phenomena in Shallow Water:
Aerodynamic Analogy (1952)7)
Sinkage and Change of Trim (1981)%)

Detection of the Boundary Layer Transition:
Hot Wire Anemometry in the Towing tank (1953)9)
Flow Visualization in the Towing Tank (1954)10)

Motion of Bodies under Free Surface:
Hydrofoil of Finite Span (1953)11)
Non-uniform Motion of a Submerged Body (1955) 12)

Wave Force on an Obstacle:
Submerged Cylinder (1954)13)
Vertical Cylinder (1956)1%)
Drift Force of a Floating Body (1960)15)

Added Resistance in Waves:
Regular Waves (1957)16)
Irregular Waves (1960)17)

Theory of Slender Ships:
Wave Resistance in Steady Forward Motion (1962)18)
Seakeeping Problems (1966)19)
Hull Pressure Distribution in Waves (1974)20)
Ship Wave Pattern (1983)21)

Hull Form Research:
Minimum Wave Resistance Hull Forms (19632)
Semi-submerged Hull of Minimum Wave Resistance (1964)23)
Application of the Theory to Hull Form Design (1966)24)
Mathematically Wave Free Form (1969)2°)
Application of the Noalinear Optimization Technique (1979)26)

Experimental Separation of Resistance Components:
Implementation of the Wave Pattern Analysis in theTank Test Practice (1967)27)
Decomposition of Resistance by the Wake Survey ( 1976)28)
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Ship Waves and Wave resistance in Viscous Fluid:
Effect of the Wake on Waves (1972)2%)

Ship Waves and Wave Resistance of a Thin Ship in Viscous Fluid (1973)30)

Full Hull Forms at Low Froude Numbers:

Double Body Linearization (1977)31)

Bow Flow Phenomena (1983)32)

Effect of Surface Tension to the Model Bow Flow (1985)3°)

Waves and Wave Resistance with Nonlinear Free Surface Condition (1985) 34)

Marine Propellers:

Propeller Characteristics in Turbulent Wake (1981)3%)
Unsteady Propellers in Non-uniform Wake (1984) 36)

Turbulent Flow in Ship's Wake:

Turbulence Measurement in the Ship Model Wake (1982)%7)
Modelling of Turbulent Boundary Layer and Wake (1985)3%)

Two Dimensional Computation of Nonlinear Free Surface:
Application to Slender Ships at Forward Speed (1994)3%)
Water Entry and Hydrodynamic Impact, Experimental Validation (1996)40)

Concluding Remarks

Half a century has passed since the Hydrodynamic Laboratory of Yokohama National University
started. One may observe its research activities to have covered various field of ship hydro-
dynamics. On arranging research projects, it has been intended to keep an even share between
theory and experiment. This criterion seems to have been nearly attained. Another idea is that the
practical usefulness, especially in the field of shipbuilding, of theoretical findings has been taken
seriously. This concept may match the spirit of Prof. Weinblum.
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”There is no theorem like the Lagally theorem.”
”The Ellipsoid is God’s gift to naval architects.”

T. Miloh
School of Engineering, Tel-Aviv University, 699 78 Ramat-Aviv, ISRAEL

Georg P. Weinblum (1897-1974) was born about the same time when John H. Michell (1863-1940) had already com-
pleted writing his seminal work on the wave resistance of thin ships (Michell 1898) - some hundred years ago. Thus, it
was not a coincidence that G.P.W. chose to write his doctoral dissertation (submitted in 1929) on ships of minimum
wave resistance using Michell’s theory. It is also well known that Michell’s famous article did not get the proper at-
tention (at least from the naval architects community) for over 25 years, although it was published in one of the most
prestigious journals (Philosophical Magazine). Indeed it was Sir Thomas Havelock, probably the leading theoretician
working on ship hydrodynamics at the beginning of the century, who rediscovered Michell’s paper 25 years after it had
appeared (Havelock 1923). The first reference to Michell’s work in Havelock’s paper appeared only as a side comment
“On the other hand, Michell, in an extremely interesting paper, gave a general expression for wave resistance, but it
suffers from serious limitations, in that the surface of the ship must be everywhere inclined at only small angle to its
vertical meridian plane”. A more well deserved credit to Michell’s theory was given in a paper by Wigley (1926). It
is believed that by that time Weinblum became acquainted with Michell’s work and since then he became a strong
advocate and promoter for using the Michell’s wave resistance formula. Weinblum also tried to bridge the gap between
theoreticians and naval architects practitioners and provided in his papers sample computations and comparisons be-
tween theory and experiments. As an example, we mention his joint paper with Graff & Kracht on the wave resistance
of a conventional merchant-ship hull which includes a comparison of drag measurments with numerical evaluations of
the Michell integral (Graff et al. 1964). In his continuous efforts to exploit relevant theories to find how they can help
ship designers, he has introduced, during the four year period (1948-1952) that he spent at the DTMB, the important
paper of Lagally (1923) to the U.S. community of ship hydrodynamicists. In this context we. cite a paragraph from
Landweber’s paper (1967) who wrote “About 20 years ago Georg Weinblum succeeded in convincing his incredulous
colleagues at the David Taylor Model Basin that THERE IS NO THEOREM LIKE THE LAGALLY THEOREM

. and pointed out the power of the LAGALLY theorem and new fields of research to many of us”. Yet another
off-repeated statement of Weinblum is “THE ELLIPSOID IS GOD’S GIFT TO NAVAL ARCHITECTS” (Newman
1972). Weinblum suggested to use the concept of equivalent ellipsoids for approximating real ship forms (Weinblum
1936). He was definitely inspired by the theoretical work of Havelock and was probably the first worker in ship theory
to study and apply the hydrodynamics of spheroids and ellipsoids to more general bodies of revolution. The same
citation regarding ellipsoidal forms, which is attributed to Weinblum, is also mentioned in Wu & Chwang (1974) and
Miloh (1979). Stimulated by these two Weinblum quotations, we intend to present here an historical account of some
theoretical methods for calculating potential flows about 3-D ellipsoidal shapes. Also presented is the development of
the Lagally method for calculating hydrodynamic loads on 3-D arbitrary rigid and defformable moving bodies.

Ellipsoid Theorem

In order to determine the hydrodynamical loads on a moving body by using the Lagally theorem, it is necessary first
to find the image singularity system within the body of the exterior potential flow field. For a general body this
procedure usually involves solving numerically an integral equation of a Fredholm type. However, for the class of
symmetric separable quadratic surfaces (i.e. spheres, spheroids and ellipsoids), the image singularity system can be
found analytically using harmonic analysis. The idea is to analytically continue the exterior flow across the surface
inside the body and to find the interior ultimate (minimal) singularity system.

Let us first consider a spherical coordinate system (R, p, %) defined by

1
¢ =Rp, y+iz=R(1-p?)?e", (1)

where (z,y, 2) is a cartesian system. An arbitrary exterior potential‘ﬂﬁow field about a sphere which vanishes at infinity
R — 00, can be represented by a Neumann series of exterior spherical harmonics. Following Hobson (1955) a typical
term of such a series can be written as

) . n n-m 6 __l
R+ pm()e = (75 _1Zn)! <%> <5a§ + i52> (2 +y* +2%)77, (2)

where P™(u) denotes the Legendre polynomial. Thus, the ultimate system of singularities for exterior spherical
harmonics consists of a system of multipoles at the origin. A similar theorem for spheroidal exterior harmonics has
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been given without proof by Havelock (1952). A proof was provided later on by Miloh (1974). The orthogonal
transformation between a cartesian and a spheroidal coordinate system (&, u, ¢) is

1 L
r=&p, y+iz=(8-1)7(1-p")%eV, (3)
where the distance between the two foci is taken to be 2. Havelock theorem can then be written as
gy ime _ 1[0 b -nFrre) de
PP = 3 (5 +in) , (@

L\ f@- 8 4y 42

where Q) represents the Legendre polynomial of the second kind. Thus, the ultimate image singularity system for
an exterior spheroidal harmonic can be represented as a multipole distribution along the axis between the two foci.
The axisymmetric case which corresponds to m = 0, renders a source distribution P,(z) on 1 > |¢|. The most general
separable quadratic surface is the triaxial ellipsoid.

2 2,2
£—+'1;2+ =1, a>b>ec. » (5)

The orthogonal transformation between the cartesian (z,y, z) and the ellipsoidal coordinate system (p, i, ) is given

by

_pw o (PP =R =R -v?) (PP - KD (R - p) (R~ vP) 6
“he VT h2(k? — h?) 2T k2(k? — h2) ’ ©
where h2 = a? —b?, k? = a?—c? and ~h < v < h < p < k < p < 0o. An arbitrary potential flow field past an ellipsoid
can be represented in terms of ellipsoidal exterior harmonics F["(p) EX* (1) ED*(v) where E™* and F* denote the Lame
polynomials of the first and second kind respectively. There exist four different types of Lame polynomials of the first
kind; class K and L ( both even in z) and class M and N ( both odd in z). The ellipsoidal theorem (Miloh 1974) then
states that exterior ellipsoidal harmonics of class K and L may be generated by a source distribution &(x, y) such that

m - o(z',y') de’ dy
OB WEF®) = - | Cal VLG - @
So \/(:c —2) +(y—y)? + 22
where (z',y’) are the rectangular points in the (z,y) plane within the focal ellipse (the ultimate image system)
g2 y?
So:az-——c2+bz——c2=1’ z=0. (8)
and o(z’,y’) is given by
2n+ l)Em(/i/)Em(l//) ( 1‘2 yZ )"‘;‘
O':L'/,IZ—( n n 1= S 9
@) = = () i) B2 ®)

In a similar manner, one can express an exterior ellipsoidal harmonic of class M or N as a normal doublet distribution
1) dz’ dy'
(w y) de’ dy (10)

/S" \/(90 Pt y-y)+2

r oy = G DEPW)ETW) - am gy B0 ()
') = 2mk B (k)/(k2 = h?) w k)= Vo =k ()

Finally, solving general potential flow problems past ellipsoidal bodies requires the expansion of the Green function
u,v) and Q(p', ¢, v') where p’ > p) in terms of ellipsoidal

F(p) B () ER' (v

where

harmonics. Such an expansion has been given in Miloh (1973)

oo 3(n)
E Em EX(p)ET (W) ET (v), 12
::1,2;(%“)'“ EP (0 B (W) Ey (V) Ey () Ey (W Ey (v) (12)
where 2
\/(u —hz)(ﬂ —’“2)('/2 h?)(v? — k%)
and s(n) is defined below for the four classes of Lame polynomials;
K L M N *
s(ny= 1+% 2 Z 2 for n even (14)

) 2
in+1) in+1) }(n+1) 3(n—1) for n odd

304




Lagally Theorem

Once the image singularity system of the exterior flow field past the body is known, one can directly compute the
hydrodynamical loads experienced by the body in terms of these singularities. The so-called Lagally theorem is valid
for both 2— D and 3— D deformable or rigid surfaces and for a line, surface, volume or discrete singularity distribution.
Using this technique avoides the computation of the pressure distribution and its integration over the body surface. In
many respects it is more direct and accurate than the method of pressure integration and may be also considered as an
extension of the 2 — D Blasius method for 3 — D flows. Lagally (1922) gave only an expression for the force acting on
a source of output m and on a doublet d both placed in a potential steady stream v. The corresponding Lagally force
is —4mp[mv + (d - V)v] where p is the density of the fluid. It is also interesting to note that the particular expression
for a point source has been derived earlier by Munk (1921). The so-called steady Lagally method has been revised
by Betz (1932) who also provided a simpler derivation. Extensions for unsteady flows and multipoles have been first
proposed by Cummins (1953, 1957). Further work on the subject of rigid body hydrodynamics is due to Landweber
& Yih (1956) and Landweber (1967). The case of deformable bodies and the appropriate generalization of the Lagally
theorem have been discussed and presented by Landweber & Miloh (1980). More recent.applications for the case of a
moving deformable body embedded in a non-uniform ambient flow field are given in Galper & Miloh (1994, 1995).
Let the equation of the deformable surface in a body-fixed coordinate system be given by S(r,t). Then the deformable
potential is found from the following Neumann boundary condition on S

0¢a _ 8S 1

Assume next that the image singularity system consists of multipoles m, of order ¢ = o + 8+ located at (z,,ys, 2;)
where the internal flow field is given by

01

1
=—-m,D,(—= D, = ———m8m8 —
¢ my q(R)» q 22092027

,Rzz(:I:—ms)2+(y—y,)2+(z——zs)2. (16)

The Lagally force acting on the deformable body is then given by

(d)
1’; = gt. (v(t)Vc — 41y myDy(r), + Kd) — 41y " m,Dy(V9),, (17)

where v(t) is the volume of the body, V. is the instantaneous velocity of its centroid and Kq is the deformation Kelvin
impulse defined by

Kd = -—-L(ﬁd ndSs. (18)

Also Y, denotes the sum of all singularities and zgd) excludes those due to ¢4. The above formulation can be applied
to the problem of self-propulsion of a deformable body which was first discussed in Benjamin & Ellis (1966, 1990),
Saffman (1967), Wu (1976) and Miloh (1983). It has been demonstrated in these papers that a deformable body
can propel itself persistently starting from rest in an inviscid and incompressible fluid by applying a periodic surface
deformation with zero-mean. The collinear velocity of self-propulsion U, can be expressed in terms of the deformation
Kelvin-impulse K4, the body mass M, and its added-mass T" as

(Mb+T)U_g+]{d:0. (19)

It is shown that the persistent self-propulsion motion arises from a non-linear interaction between symmetric and skew-
symmetric surface deformation modes. Extension for the case of a maneuvering body (i.e. including auto-rotation)
and self-propulsion in an ambient non-uniform stream, are given in Miloh & Galper (1993) and Galper & Miloh (1995).
It is demonstrated that the presence of a flow non-uniformity may considerably amplify the order of magnitude of
the self-propulsion velocity, as a result of parametric resonant interactions between surface deformations and flow
non-uniformity. Applications to bubble dynamics including the problem of bubble coalesce in a cloud are discussed
within the same framework in Galper & Miloh (1994, 1995). The same methodology can be also used for estimating
the hydrodynamical loads on slender ocean structures in a non-uniform wave field ( Galper & Miloh (1996, 1997)).
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(Special Weinblum Meeting, Carry-le-Rouet, 26-27 March 1997)

Resonant Diffraction Problems

By J. N. Newman
Department of Ocean Engineering, MIT, Cambridge, MA 02139, U.S.A.

Resonant motions of floating bodies are particularly important when the damping is
small. Familiar examples include rolling of ships, and the heave response of slender spar
buoys. In cases such as these the resonant motion is associated solely with the body dy-
namics, that is to say with the force or moment coefficients of the radiation problem where
the body is oscillating in otherwise calm water. The resonant frequency is determined from
the condition that the inertial force due to the body mass and hydrodynamic added mass is
equal and opposite to the hydrostatic restoring force; the amplitude at resonance is inversely
proportional to the damping.

Resonant motions of the free surface can occur independently of the body motions for
certain special types of diffraction problems. Well known examples include moon pools, and
wave-power devices with oscillating water columns, where an enclosed internal region of the
fluid exists with a free surface, coupled to the exterior domain via a submerged opening.
The lowest resonant frequency is associated with the Helmholtz mode, where the motion
of the internal fluid is similar to a heaving rigid body with the same mass and waterplane
area.

The case of a moon pool is particularly important for certain types of offshore plat-
forms. Computations are presented to illustrate the amplitude of free-surface elevation at
the center of the moon pool, for a generic family of axisymmetric cylinders. The Helmholtz
resonance is a prominent feature in the diffraction solution, with increasing peak amplitude
and decreasing bandwidth as the moon pool radius is reduced. In the case where the body
is free to heave in the presence of incident waves, we find from careful computations that
there is no amplification of the moon pool response at the original resonant frequency of the
diffraction problem, apparently because the free motions of the body adapt to and cancel
out any large forcing pressure at the bottom of the moon pool. Instead, the moon pool res-
onance occurs at a slightly higher frequency and wavenumber. This is due to the occurrence
of a second heave resonant frequency, which in turn is caused by the rapid variation of the
heave added mass with respect to frequency.

Complete enclosure of the internal free surface is not necessary. Resonant motions,
including the Helmholtz mode, can occur when there is an opening between the interior and
exterior fluid regions, as in the case of a harbor with a small entrance (Mei, 1977). Another
interesting example is where two vessels are close together in a catamaran configuration or,
equivalently, a single vessel is close to a parallel wall (quay). In the long narrow interior
domain resonant standing waves can occur with large amplitude, provided the frequency
is such that the nodes of the standing wave coincide with the openings to the exterior
domain at the ends of the two vessels. Numerical results to illustrate this phenomenon were
presented by Newman and Sclavounos (1988).
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At the last Workshop Maniar & Newman (1996) showed that resonant motions can
occur in the gaps between adjacent circular cylinders in a long periodic array, although
there is no clear distinction between the interior and exterior domains of the free surface.
More extensive results and analysis are described by Maniar & Newman (1997). These
resonant modes are associated with trapped waves which exist for diffraction past a single
cylinder in a channel, but the connection with that problem is essentially mathematical
and cannot be explained on a simple physical basis. This phenomenon is important even for
small numbers of cylinders, as in the case of a tension-leg platform, but it is remarkably large
for longer arrays with peak wave loads acting on individual cylinders which are more-or-less
proportional to the total number of cylinders in the array.

Both ‘Neumann’ and ‘Dirichlet’ trapped modes exist in correspondence with the bound-
ary conditions imposed on the walls in the channel problem. The results for long arrays of
cylinders also display secondary peaks and intermediate minima, just below these critical
frequencies. In recent work Maniar has shown that the secondary features can be explained
in terms of superposing end-to-end the diffraction fields of smaller arrays with one-half,
one-third, one-quarter, etc. of the total number of cylinders.

Porter and Evans (1997) have shown that analogous resonant modes can occur in the
case of a circular array, especially when the gaps between adjacent cylinders are small.
At first glance one might suppose that this phenomenon is more analogous to the case of
a harbor with a small entrance, where the resonance is associated with the interior fluid
domain and free surface. However the correspondence of their modes and wavenumbers
with those found for the linear array suggests that the resonance is due to the gaps between
the cylinders and not to the interior domain. Indeed, their findings help to explain why this
phenomenon is relevant to tension-leg platforms.
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ON SHIP WAVES AT TRANSCRITICAL SPEEDS

Som D. Sharma
Institute of Ship Technology
Mercator University, D-47048 Duisburg, Germany

Summary

In a historical review extending back to the memorable International Symposium on
Ship Theory held at Hamburg in 1962 to celebrate Georg Weinblum's 65th birthday
it was shown how efficiently modern shallow-water ship-wave theory, developed
largely by several Weinblum Memorial Lecturers attending this present meeting,
has succeeded in explaining various exciting transcritical flow phenomena, origi-
naly observed at full scale more than a century ago and repeatedly verified in ship
model tanks. These include the dramatic rise and fall of wave resistance, reversal of
squat, metamorphosis of wave pattern, and generation of forward solitons, all oc-
curring as ship speed rises through its critical value in shallow water, particularly in
a narrow channel. Systematic model experiments initiated by Weinblum at the
Shallow Water Towing Tank in Duisburg (VBD) more than 35 years ago have pro-
ved invaluable for validating recent theoretical computations. New wave pattern,
side force and yaw moment measurements have corroborated the calculations in
more detail. Further development of the theory by this Speaker's group at Duisburg
has culminated in the discovery of "superconductive" channels and catamarans,
characterized by zero wave resistance at a chosen supercritical design speed. This
is achieved, in principle, by mutual cancelation of bow and stern waves, a bit akin to
the classical Busemann's biplane proposed for hypersonic flight some 60 years
ago. The superconductive catamaran, rendered independent of channel sidewalls
by use of suitably cambered hulis, would, besides saving propulsive power by
virtue of its vanishing wave resistance, have the additional environmental benefit of
being a "no-wash" vehicle. Ongoing research is concerned with the conception of a
cambered air-cushion catamaran, ideally eliminating the local wave also.
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MULTIHULLS

E. TUCK

University of Adelaide, Applied Math. Dept.

A discussion of various problems involving one or more bodies at or near a free
surface is given. The general problem of multihull wave resistance is discussed,
including the generalised Michell integral and Krein’s zero-drag caravans. Some
work done at Adelaide over the past two years on minimising the total (viscous
plus wave) drag of multihull ships using the genetic algorithm technique is sum-
marised. Recent work on a pair of tandem submerged cylinders is also discussed,
including identification of configurations having zero drag on each separate body.
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Remarks on Energy Transport in Waves

Marshall P. Tulin
Director, Ocean Engineering Laboratory
University of California, Santa Barbara

Preface In 1950 I arrived at the Taylor Model Basin in Washington, age
24, to begin work in naval hydrodynamics. George Weinblum was 53 then. He
had arrived there 2 years earlier after a stay in England, and was to return
to Hamburg two years later. He was a large man, with a very large head and
twinkly eyes, of immense charm and diplomacy and talent, of great sharp wit,
and with an international view of life. He seemed somewhat the bohemian.

He had already made a large impact on the very talented people there, in-
cluding John Wehausen, Manley St. Denis, Lou Landweber (our Boss), Phil
FEisenberg, Bill Cummins, John Breslin, Dick Couch, and others. He loved
young people, and he went out of his way to encourage us. His deep faith in the
necessity to treat naval architecture problems in a scientific way made a deep
and lasting impression on us all, especially considering that he was a man of
practical experience.

Despite the tentativeness of life away from his family and homeland, and
without a fized position, I believe that during this period his life was a very happy
one. He was well liked by everyone and loved by more than a few persons.

In tribute to him I want to point out that he had a very considerable positive
influence on people there, who themselves went on to have a great effect on naval
architecture and naval hydrodynamics in our country, and on education in those

fields.

Remarks

Is it possible to say anything new about this subject, which is in all relevant texts
covered by introduction of the notion of group velocity? Now it is true that the
subject of the group velocity includes puzzling aspects. For example, the connection
between the parallel and separate treatments of group velocity via kinematical and/or
dynamical demonstrations, leading in the case 6f linear waves to identical results.
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And, beyond that, the question as to the proper treatment and results in the case of
finite amplitude waves.

The present remarks are however not concerned directly with these questions. Our
concern is even more basic. It can be put in this question: What is it that physically
propagates at the group velocity? Obviously the difficulty in answering lies in the
fact that the energy in surface waves is compartmented in two parts: kinetic and
potential. It has been customary to treat these as a sum, and it is the sum of these
which demonstrations suggest are propagated at the group velocity. Furthermore, the
kinetic energy has been treated not only as averaged in time, but also in the vertical
direction.

Unfortunately, this customary treatment hides from our view the real mechanisms
of energy transport in water waves, and obscures the real meaning of group velocity,
which in actuality is an arithmetic mean. The answer to the question underlined above
is: only the modulated wave envelope propagates physically at the group velocity.

Proper understanding of the subject requires consideration of the kinetic energy
flux vector at all points in the wave, and separate consideration of the surface energy,
which itself consists of two parts, gravitational and surface tension. It is also neces-
sary to conceptualize the waves not as a uniform Stokes wave, but as a wave whose
amplitude is changing in space and time. It is only when these things are done that
the actual mechanisms of wave energy transport reveal themselves clearly.

Then it can be shown that in the case of monochromatic gravity waves, the time
averaged kinetic energy at every depth below the wave trough propagates horizontally
at speeds between one and two times the phase speed of the wave, depending on the
water depth. In a frame moving with the wave speed, the kinetic energy at each
point can be seen to propagate along flux lines which extend beneath the surface
from one point to another on the wave surface. these lines are arranged in four cells
per wavelength, Figure 1, and in shallow water the cells containing flux in the wave
propagation direction are more dominant, resulting in a net forward flux relative to
the moving wave.

For all waves, the time averaged gravitational potential energy does not propagate
at all, while the (linearized) surface tension energy propagates at twice the wave phase
velocity. The net result is that the transport speed calculated as a weighted average of
the transport of the separate components of energy yields the familiar group velocity.

In the case of a modulating gravity wave the kinetic energy propagates vertically
as well as horizontally and in this way provides the potential energy at the surface to
the forward face of a wave group and extracts it from the surface in the opposite case,
Figure 2. It is due to this mechanism of exchange between gravitational and kinetic
energies that the modulation is allowed to propagate, and the speed of propagation
for weak waves is precisely the group velocity.
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NOTES ON WAVE MOTION NEAR A SPHERE
BETWEEN PARALLEL WALLS

BY F.URSELL

DEPARTMENT OF MATHEMATICS,
MANCHESTER UNIVERSITY, M13 9PL, U.K.

1 Introduction

The following problem was proposed to me by G.X. Wu at the 1996 Workshop in Hamburg . A sub-
merged sphere of radius a is placed with its centre at depth f midway between parallel vertical walls
¢ = ££, where £ > a, and performs prescribed simple harmonic oscillations of angular frequency w and
small amplitude. How can the motion be calculated ? Problems of this type in two dimensions are well
understood , how can the methods be generalized ? It will be seen that the three-dimensional solution
involves much mathematical analysis, and only an outline will be given here.

Rectangular cartesian axes (z,y, z) are taken with the origin O in the mean free surface y = 0, where y
increases with depth. Let the corresponding velocity potential be denoted by #(z,y, z) exp(—iwt). (The
time-factor exp(—iwt) will henceforth be omitted. ) Then the governing equation is

lig lig o* _
(533—2 + 53;—2 + b?) ¢(z,y,2) =0, (1.1)
with the boundary condition 5
- ¢
K¢+ 5 =0ony=0, (1.2)
where K = w?/g, and the boundary condition
9¢
. =0onz =%l (1.3)

We take spherical polar coordinates (r, 8, a) about the centre (0, f,0) of the sphere, such that
z =rsinfsine,y = f +rcosb,z =rsinfcosa, where r? = 2% + (y - f)? + 22 (1.4)
The boundary condition on the sphere r = a is assumed to be.of the form

)

Pl U6,a) = Z Z UrPr(cos6) cosma, say (1.5)

n=0 m=0
where U(8, a) is a prescribed even function of a, and the coefficients U™ are therefore assumed known.
(Odd functions of o can be treated in the same way.) The functions P™ are the usual associated
Legendre functions, see [Bateman, I, 1953]. There is also a radiation condition at infinity: the waves
travel outwards towards z = #+oco.

2 Outline of the solution

The solution will make use of the method of multipoles. A typical solution of Laplace’s equation singular
at the centre of the sphere is r~""!P™(cos #) cos ma. In the absence of side walls the multipole potential
(including the image in the free surface) can be shown to be

(G:zn)oo = G:zn(wv y,z;O,f,O;oo)
Py (cos6) (ZL)"  [TELE o kep 2
T T cosmadt momi ), ¥—K k" e Im(kp) dk cosma, (2.1)
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where Jn(Z) is the usual Bessel function of order m, see [Bateman, II, 1953], and where the radiation
condition is satisfied if the contour of integration passes below the pole k¥ = K. When side walls are
present then each multipole (2.1) has an image potential (G7)image in the side walls. We write

(G )K = (Gm)oo + (Gm)zmayea

Evidently near the centre of the sphere the image potential (G} )image must have an expansion of the
form

oo N
Z Z a(n,m; N, M) r" P¥(cos6) cos Ma. (2.2)
=0 M=0
For the solution of our boundary-value problem the coefficients a(n,m; N, M) in (2.2) must be known
explicitly, and our recent work has shown that the coefficients in this expansion can actually be found
in a form involving single and double integrals. We shall now assume (and it should not be difficult to
prove) that the solution of our problem can be expressed as the sum

b@y,2) =D > Cln,m)a™(GR)e, (2.3)

n=0 m=0

where the coefficients C(n,m) are to be determined from the boundary condition on the sphere. This
will be satisfied if the coefficients C(n,m) satisfy a doubly infinite system of the form

Cln,m) + Z Z (3 )N+"+ b(n,m : N, M) C(N, M) = U™, (2.4)

N=0 M=0

and in this system the coefficients b(n, m; N, M) are known explicitly as double or single integrals. These
coefficients depend on i, m, N and M, and also on the parameters K f and f/¢, and it remains to compute
them numerically. The doubly-infinite system (2.4) must then be solved for each set of values of the
three parameters K f, f/¢ and a/£. It should not be difficult to show that this system has a solution in
principle, except possibly at a certain discrete set of frequencies corresponding to trapped modes.

3 Construction of the multipole potentials (G}),

In the construction of the multipoles (G™ ), an important part is played by various forms of the Havelock
wavemaker theory, see [Havelock, 1929]. Havelock expansions are expansions in which the variation in
the y-direction is expressed in the form

fly) = Ae"Kv 4 f B(k)(k cos ky — K sinky) dk, (8.1)
where o
A=2K [ e ay (3:2)
0
and
B(k) = W / f(y)(kcosky — K sinky) dy. (3.3)

This expansion is associated with the boundary condition (1.2) . Here we shall consider only the case
n = m = 0 which is typical, and we shall write Goo and Gy in place of (G )oo and (G3)e - As has already
been seen in (2.1), we find that

G = % + / e~ ky+hH i R Jo(kp)dk, (3.4)
0

where it can be shown that the radiation condition is satisfied if the path of integration passes below
the pole k = K. We also need two Havelock expansions for G in rectangular coordinates. One of these
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is valid for z > 0, the other is valid for < 0. These can be found explicitly, either by deforming the
contour of integration in (3.4) or by using Green’s Theorem. It is found that’

° d

s oKy v —ivz
Cool(t,y,2) = 2Ke=KG+D / oy SRttt - K e (3.5)
2 [~ dk . ..
+ p m(kcosky—Ksmky)(kcoskf—Ksmkf)><
0
* dv —-ivz
) / (V2 + k2)I/ exp{—z|(v* + k*)!/*}e~%, (3.6)
)

where the contour of integration in (3.5) passes above k = —K and below k = K. We next suppose that
side walls are present. Then the image potential must have a Havelock expansion of the form

Gimage(T,y,2) = e"Ky/ dv A(v) cosh{z(v? — K?)/?}e—iv= (3.7
2 o0 - o o] .
+ -7;/ dk(k cos ky — K sin ky)/ dv B(k,v) cosh{z(v? + k?)/?}e~i"
0 -0
(3.8)

because it is clearly an even function of z. From the boundary condition

%(GOO(‘T) + Gimage(w)) =Qonz =/{¢

we can now find A(v) and B(k,v), using the Havelock expansions (3.5) and (3.6) for Go,. We find that
(v* — K12 A(v){sinh (v — K*)}/?} — 2K e Kf exp{—£(1? — K*)1/?} =0, (3.9)

and

kcoskf — Ksinkf
K2+k2

B(k,v)(v? + k?)'/? sinh{£(+? + k?)*/?} - exp{—0(v? + k*)'/?} = 0. (3.10)

This completes the construction of the potential G,.

4 Expansion near the centre of the sphere

The integrals (3.7) and (3.8) are typically of the form
Iz,1,2) = [ Alo)exp{é)e +n(oly +(w)z} do, (1)
where the integrals may be single or double integrals, and where
€4t + =0,
since the integral satisfies Laplace’s equation. In the integral (4.1) we write
& = in(v) cos B(v), ¢ =in(v)sinB(v) and z = rsinfsina,y = f +rcosf,z = rsinf cosa. (4.2)
Then

I(z,y,z) = / A(v) exp(n(v)f) exp (nr{cos 8 + isinfsin(a + B(v))}) dv. (4.3)

In this integral we write

exp (nr{cos 8 + isin@sin(a + B(v))}) = (n;)!N {cos 8 + isinsin(a + B(v))}Y, (4.4)

N=0
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and in the series we use the known identity

(cos 6 + isin @ cos(a + B))N
= PN(cos 9)

+ 2 Z (—i)M — e T j\/[)’ e PM(c0s 6)(cos Ma cos M3 — sin Masin Mp). (4.5)

This argument shows that the coefficient of rNP¥ (cos §) cos Ma in (2.2) involves the integral

[ 4wy expiner ()} cos (o) do.

In this way all the coefficients can be determined, and the boundary condition on the sphere can then
be applied.

5 Discussion

There are still many aspects which we have not discussed. We mention only a few.

(1) The precise form of the coefficients §(n,m : N, M) in equation (2.4) must be studied; these in-
volve six parameters . Calculations show that these coefficients actually depend on fewer parameters.
Similarly in two dimensions the parameters depend on three parameters, not on four.

(2) For |z| > a there must be a modal expansion in each direction, of the form

m 1 = ST
(GR)e = 587 (y,2;0:0) + > cos — & (Y, 7870), (5.1)

8=1

where the functions ®7*(y, z; s; £) must be found. It has been shown that these functions have Havelock
expansions in the y-direction and can be found either by deformation of contours or by Green’s Theorem.

(3) The method can readily be extended to the general case where the centre of the sphere is not
necessarily midway between the vertical walls.

(4) We have not discussed the expansion of Go near the sphere. This presents little difficulty. We
have already noted that the calculation of the expansion for the general multipole potential (GJ')e is
similar to the calculation for the source potential, given above.
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On modeling nonlinear water waves

by Theodore Yaotsu Wu
California Institute of Technology, Pasadena, CA 91125, U.S.A.

1 Introduction

My interest in studying nonlinear dispersive long waves has an origin in the stimuli I received from
Professor Georg Weinblum during my sabbatical visit in 1964-65 at the Schiffbau Instituet. Ap-
parently, there had been in existence among a handful of the master experimentalists a puzzle that
in conducting towing tank tests with ship models towed at transcritical velocities in shallow water,
perplexing difficulties were invariably encountered in attempt to attain data with the ususal repeata-
bility commonly known to their previous experience with noncritical cases. Subsequent studies later
led to the interesting discoveries reported by Huang et al. (1982) and Wu & Wu (1982).

In modeling weakly nonlinear and weakly dispersive long waves, it has been a common practice
to taking two key parameters, namely

e=h/A, a=alh, (1)

for characterising waves of typical length A, amplitude @ in water of undisturbed depth k. In this
respect, it is so well said by Julian Cole (1968) that theories can be sought to show how different
expansions based on different parametric regimes lead to different approximate equations.

In making attempts to explore and determine the basic mechanism underlying the remarkable
phenomenon of periodic generation of upstream-radiating solitons by disturbances moving steadily
at transcritical velocity, efforts have been devoted to examine the effects of theoreticl models of
accuracy higher than that of Boussinesq’s equations, as demonstrated by a previous study by Wu
& Zhang (1996). To facilitate further studies, this work is an attempt to establish an exact model
for describing propagation and generaton of nonlinear dispersive gravity-capillary waves of arbitrary
amplitude on water of uniform depth. With this study, I wish to join my colleagues to commemorate
the Centennial Celebration of Georg Weinblum.

2 The basic equations

Here we consider the class of three-dimensional long waves on a layer of water of uniform depth
k, when undisturbed. The fluid moving with velocity (u,w) = (u,v,w) occupies the flow field in
—h < z < ((r,t), where z = —h is a rigid horizontal bottom, ((r,t) is the water surface elevation
from the undisturbed plane at z = 0, measured at the horizontal position vector r = (z,y,0) at time
t, and r is unbounded, |r| < co. Assuming the fluid incompressible, the velocity field irrotational,
so the motion satisfies the Euler equations of continuity, horizontal and vertical momentum:

Viut+w, = 0, (2)
du 1

—=u;+u-Vut+wu, = —-Vp, (3)
dt p
1

d—w:wt+U'VlU+wwz = —p:—9, (4)
dt P

where V = (8,, 8,,0), (0, = 0/dz, etc.) is the horizontal projection of the vector gradient operator,
p is the pressure, p the density and g the gravitational acceleration. Here, the subscripts ¢ and z
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denote differentiation. The boundary conditions are

w = D¢ (Dzat'}’ﬁva OHZZC(Tat)), (5)
p=pur,t) =7V -n (2 =((r,1)), (6)
w =0 (z = —h), (7)

where p,(7,?) is a given external pressure disturbance gaged over the constant basic pressure (which
is zero), py is the uniform surface tension and m is the outward unit vector normal to the water
surface.

The continuity equation (1) can be averaged over the water column —h < z < ¢ under the

kinematic boundary conditions (5) and (7), yielding the depth-mean continuity equation (Wu 1979,
1981),

n+V-(w) = 0 (n="h+(), (8)
where the quantities with an overhead bar denote their depth-mean,
Tty =— [ frznds (=h+0), (9
nJ-h

On the other hand, the horizontal momentum equation can be converted into an equation for
(1, () where @ is the horizontal velocity at the water surface. For an arbitrary flow variable f(r,z,1),
it assumes its free surface value

A

f(’l', C(’I‘,t),i) :f(rat)’ (10)

say. Clearly, the rates of variation of these functions with respect to » and ¢ satisfy the following
relations

of =0 + @‘C ¢ (2=, (11)
vi=vi+ v =0 (12)

;From these fundamental relations it immediately follows that we have the theorem (see e.g. Choi

1995)
df

dt l==¢
Making use of these formulas, we readily deduce from (2)-(4) the result

=Df (D=4 +a-V) (13)

Di + [g(t) + D*()VC = —%Vpa LAV n (14)

Here, we have extended our consideration to include the more general case of Faraday’s waves pro-
duced in a horizontal water tank under resonant vibration, a case which is equivalent to having
a time-dependent gravity acceleration with refenence to the tank frame. This resulting equation,
though superficially involving only (&, (), actually has incorporated the vertical momentum equa-
tion as well as the kinematic and dynamic conditions at the free surface to yield this equation of
overall equilibrium. Furthermore, it is exact.

Thus, we have obtained two exact equations, one being the depth-mean continuity quation (8)
for (@, (), and the other the momentum equation (14) for (i@,¢). This system of equations, however,
is not closed because there are more unknown variables than the number of equations. Closure of
the system can be achieved by further seeking the general solution to the field equation satisfied by
the velocity potentail so as to provide an exact relation between the two sets of dependent variables,
as will be shown below.

322




3 Nonlinear dispersive water wave models

Since the two new equations for the continuity and momentum are exact, we may ignore the nonlin-
earity parameter « by regarding it as arbitrary and consider first the special case of long waves by
assuming the dispersion parameter € = h/\ to be small. (It turns out that this assumption can also
be eventually relaxed.)

Thus, with the vertical length scaled by k, horizontal length by ), the three-dimensional Laplace
equation satisfied by the velocity potential ¢ involves the parameter €

¢z + V2P =0 (-1<z2<). (15)

Further, with ¢ scaled by ¢\, where ¢ = 1/gh is the linear wave speed, ¢ satisfying (12) may assume
an expansion of the form

oo TL

¢(rztae—oz262"® r,z,t)=a Z

n=0 n=0

+2)"" V¥ o(r, 1 ). (16)

Here, ¢, jointly with the horizontal velocity w (scaled by ¢) and the elevation ( (scaled by h)
are assumed to be of order «, which is arbitrary. The function ¢o(r,2,t;€), which is the only
unknown involved in ¢, may depend on the parameter € resulting from appropriate regroupings of
the complimentary solutions of the higher-order equations such that ¢o(r,z,t;€) = O(1) as € — 0.
This regrouping is admissible provided the medium is uniform (k =const.) and unbounded, in
the absence of any boundary effects of specific order in magnitude. From this expansion of ¢, we
deduce the horizontal and vertical velocity components, u and w, both scaled by ¢, from u = V¢,

w= e 194/0z, giving

U = « z%e%un =« Z 7 [e(l + 2)]" Vg0 (v 15 €), (17)
w = « z_: ey, = ani::l % [e(1 + 2')]2"—1 V¥ ¢o(r, t;€), (18)

where uo(7r,t) = V. Now, the horizontal velocity at the bottom plane (z = —1) is simply
aug = aVao. (19)

We further have the depth-mean velocity @ and the on-surface velocity @ as

'n,

+1)

u =

7 [e(1+ OF" VP uq, (20)

u =

[e e}
- 2n 2n

Z 1+ 1"V (21)
The present solution is of significance in drawing the conclusion that if u, is analytic everywhere

in the flow domain, the above series are all convergent within their radius of convergence, which is
infinite. In such circumstances, the last two equations then define the functions

u=u(u,,() and  w=u(uo,() (22)

as analytic within the flow domain. Finally, from this result we may derive any one of the three basic
sets of velocities, explicitly as a function of another by means of series inversion, the resulting series
being noted to possess a finite radius of convergence.
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In summary, we have now obtained three sets of models for describing nonlinear dispersive gravity-
capillary waves on water of uniform depth in terms of the three sets of basic variables. In principle,
these three models are equivalent in being exact for predicting this class of waves without limitation
to the order of nonlinearity and dispersion, except that the fluid is taken to be incompressible and
the flow, irrotational. For numerical computation based on these models, effective algorithms are
being investigated. For the special case of nonlinear waves under small dispersive effects represented
with the series truncated to some high orders, reference is made to Wu and Zhang (1996).
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OTTO GRIM
Propeller and Vane Wheel as Possible Propulsion Device for Ships

TAKAO INUI

From Bulbous Bow to Free Surface Shock Wave ~
Twenty Years' Trend of Researches on Ship Waves
at the Tokyo University Tank

Louls LANDWEBER
Interactions between Viscosity and Ship Waves

GEORGE E. GADD
Some Effects of Scale in Ship Model Testing

THEODORE Y. WU
The Shallow Water Effects — Do Steady Disturbances Always Result
in Steady Responses?

MARSHALL P. TULIN
Surface Waves from the Ray Point of View

FRITZ J. URSELL
Mathematical Observations on the Method of Multipoles

SomM DEO SHARMA
On the So-Called Memory Effect in Ship Hydrodynamics

HAJIME MARUO
Evolution of the Theory of Slender Ships

JOHN NICHOLAS NEWMAN
The Numerical Towing Tank — Fact or Fiction?

KARL WIEGHARDT
A Characteristic of Three-Dimensional Free Turbulence

ERNEST OLIVER TUCK
Ship-Hydrodynamic Free-Surface Problems without Waves

JOHN PERSHING BRESLIN
Induced Effects on Propeller Inflows

ODD MAGNUS FALTINSEN
On Seakeeping of Conventional and High-Speed Vessels

MASATOSHI BESSHO
A Consistent Linearized Theory of Wave-making Resistance of Ships

TouvIA MILOH
Ship Motion in Non-Homogeneous Media

LARS LARSSON
CFD in Ship Design — Prospects and Limitations

JUSTIN E. KERWIN
Experience in Modeling and Computing Flows with Lift
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