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Computing The Green Function for linear wave-body interaction

H. B. Bingham *

The interaction between surface gravity waves and a structure in (or near) the free-surface is often
analysed using potential theory, with linearised conditions applied on the body and the free-surface
boundaries. Having assumed linearity, the response of the structure is described by a set of canonical
radiation and diffraction response functions, which can be superposed with particular wave data to obtain
particular solutions. These response functions are solutions to special distributions of normal velocity over
the body which correspond to certain physical problems (i.e. forced motion of the body, or diffraction
of a long-crested incident wave.) Another way of representing the interaction of waves with a structure
is to compute The Green Function for the body. By “The Green Function” we refer to the particular
Green function that satisfies the homogeneous form of the initial-boundary-value problem (including
the body boundary condition) except at one singular point on the body surface (see [1]). Any desired
quantity related to wave-body interaction may be expressed in terms of The Green Function. In general,
the standard approach will be computationally more efficient than computing The Green Function, but
there exist some situations where it may be advantageous to use a discrete form of The Green Function
instead. Assume that a body is to be analysed which has J degrees of freedom, (6 rigid-body modes
plus some number of flexible modes) and is subject to incident wave forcing from Nj heading angles. As
explained below, computing the discrete form of The Green Function requires solving N hydrodynamic
problems where N is the number of panels required to obtain converged results for the quantities of
interest and a given body. Thus if the analysis is very complex, such that J + Ng > N, then computing
The Green Function will be more efficient. Another situation where computing The Green Function
might be attractive is when it is impractical (or impossible) to split the incident wave field into a finite
sum of long-crested (uniform along one horizontal dimension) waves. For example, a body subject to
incident waves which are diffracted and/or refracted by nearby corners or variable bottom topography.

The linear wave-body interaction problem can be expressed succinctly via the equations of motion in
convolution form,
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In this expression, an over-dot indicates differentiation with respect to time. The body’s inertia matrix
is Mk, and the hydrostatic restoring-force coefficients are given by Cjx. The force due to the radiation
of waves by the body motion is expressed as a convolution of the radiation impulse-response functions
Kk, ajk, bjx, and cjg; with the body velocity components in J degrees of freedom. The wave exciting
force F;p(t) is typically taken to be a superposition of long-crested waves and is thereby expressed in the
following convolution form
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where ((t,3) is a time history of the elevation of the long-crested incident wave with heading angle 8
(the angle between the positive z-axis and the wave propagation direction) and K;p(t, 3) is the impulse-
response function for the diffraction force due to an impulsive long-crested wave from heading angle 3.
(In following seas with U # 0, there are three convolutions of this form which must be summed.) The
diffraction force can also be expressed in terms of solutions to radiation problems via the Haskind-Newman
relations
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where ¢ is the solution to the “reverse-flow” radiation problem (f.e. the radiation problem with the
direction of the steady translation reversed.) Note that the Haskind-Newman relations provide the force,
but no other information about the diffraction flow, and that a number of assumptions are involved in
their derivation for U # 0, making them of limited appeal in that case.

If the incident wave is restricted to be time harmonic with frequency of encounter w, amplitude A, and
heading angle §, then ((t) = AR{e™*}, and as t — oo the response becomes zj(t) = R{& (w, B) e},
and the equation of motion tend to

J
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The quantity & /A is usually called the response-amplitude operator (RAO). The frequency-response
functions on the left-hand side of (4) (the added-mass and damping coeficients) are related to the
radiation impulse-response functions through the Fourier transforms

1 o0 ‘ o0
Ajp(w) = ajx - Z}-/ dt K (t)sinwt; Bjp(w) = bk +/ dt K;;(t) coswt. (5)
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The frequency-response function on the right-hand side of (4) (the exciting force coeflicient) is related to
the diffraction impulse-response function through the Fourier transform

XjD (w, B) = /;oodt KjD(t, ﬂ)e_*“". (6)

As in the time-domain, the diffraction force can be expressed in terms of radiation potentials via the
Haskind-Newman relations

Xin(w,8) = —wp [ &€ [¢(Ew,0)05,E ) - 67 €IS Ew,)] ™)

The physically motivated canonical radiation and diffraction problems defined above provide a com-
plete picture of the linear interaction between waves and a structure. Another, perhaps less physically
intuitive means of capturing this information is to compute The Green Function ¢(&; €,t) for the body.
This function satisfies the Laplace equation at every point in the fluid domain, the linear free-surface
boundary condition on the free-surface boundary, and homogeneous Neumann conditions on the body
boundary except at one singular point, thus

i-Vad(@Et) =8E-Et); e ®8)

Any imaginable flow quantity can be expressed in terms of this function. For example, the corresponding
first-order dynamic pressure impulse-response function (with U = 0 for illustration purposes) is

p(E € t) = —p (%€, 1), 9)
and the force impulse-response function is
FEn= [[ap@Eon@. 10)
b

With these definitions, we can express the force on the body due to an arbitrary distribution of fluid
velocity, V' (Z, t), as

FO = [[ & [“ara@-7EnFE-). ay

This expression is quite general and equally applicable to any distribution of normal velocity 7 - V. For
example, by setting 7 - V = n16(t) we can recover the six surge radiation impulse-response functions.
Diffraction of an incident wave by the fixed body can be similarly represented. Consider an incident wave,
¢r, with corresponding fluid velocity Vi(Z, ) and (first-order) dynamic pressure py (%,t). The diffraction
force on the body can be split into two parts, F;p(t) = Fji(t) + Fjs(t), where the first term

Fyr(t) = —p / /S dz p' (&, 1) n; (12)
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is often referred to as the Froude-Krilov force, and Fjs is the scattering force. Letting V=Viin
Equation (11) gives the scattering force due to an arbitrary incident wave

Fis() = [ js & [ " U Vi € F (€t - 7). (13)

The same exercise may be carried out with a time-harmonic incident wave. In this case, let ¢(&; E, t) =
R{$(F; £, w)e™t} with

Vi@ Ew) =6@E-8, eS8 (14)

Again, any flow quantity can be defined in terms of The Green Function. For example, the dynamic
pressure frequency-response function is (again with U = 0 for illustration)

B(& €, w) = ~wp §(&; ,w), (15)

and the force frequency-response function is
F€w) = [[ @ s@Ewn@, (19)
b

v‘;hich gives the corresponding general expression for the force on the body due to the fluid velocity
(Z,w)

Fi(w) = / [ 5@ VEw) FEw. (17)

Similarly, the added-mass, damping, and long-crested wave exciting force coefficients can be recovered
by considering the appropriate distributions of 7 - 1%

To demonstrate the practical application of The Green Function, we compute it for a bottom mounted
circular cylinder, and then use it to recover the diffraction force due to long-crested incident waves. The
accuracy is then compared to a direct solution of the canonical diffraction problem. The calculations
are made using the low-order panel method program WAMIT. In the context of a low-order (constant
strength) panel method, the discrete analogue to the boundary conditions on ¢ and ¢ are

" a(t); =k | .
n-V¢jk(t)={ 0,() ;‘;ék } ]=1,2,...,N; k=1,2,..,N; (18)
and
“ L s Li=k) .
n-V¢]—k(t) = 0; j # k ] = 1,2,...,N; k= 1,2,...,N; (19)

which can be thought of as N special generalised radiation problems.

Figure 1 shows the magnitude of the horizontal wave exciting force on the cylinder as a function of
frequency, while Figure 2 shows the absolute error in the two calculations. Both calculations where made
using N = 252 panels at 120 evenly spaced frequencies. Using The Green Function produces results
of comparable, although typically slightly lower accuracy. This is not surprising since using The Green
Function requires another set of integrations over the body surface which can be expected to introduce
additional errors into the calculations.
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Figure 1: Magnitude of the non-dimensional surge exciting force -p—-g%l‘!z for a bottom mounted circular

cylinder of radius R, in water of depth H = 1, plotted against (%)}iw.
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Figure 2: Absolute error of the two methods in the magnitude of the surge exciting force.




