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In this paper, three methods for evaluating the time-domain Green function
during BEM computations of impulse response functions of floating bodies are
compared, in terms of cpu time performances. The impulsive wave radiation
problem is solved in the general frame of linear free-surface potential flow. The
comparison is made by considering a single degree of freedom, say heave motion,
without loss of generality.

A body of wetted surface C, in equilibrium on the fluid at rest, is given at ¢t=0 an
impulsive motion defined by a step velocity. We shall work here on the heave
motion: V,=zH(t) . The resulting velocity potential is the solution of the
Fredholm-Volterra integral equation :
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where the Green function is given by :
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The term (2-b) is the impulsive part of the function, whereas (2-c) is generally
referred to as the memory part.

Since the early eighties, several authors have proposed numerical algorithms for
the solution of the above 3D problem, or some variant (Liapis 1986, King 1987,
Kormeyer 1988, Magee 1991, Bingham 1994,...). In his program, Ferrant (1988) used a
zeroth order direct BEM method. His computer code was used as a basis in the
present study; it was adapted to take into account the new computational
techniques for the Green function. Let us briefly summarize here the main
features of the code. The body surface C is discretized into plane triangular or
quadrilateral panels C;. Sources of constant density o=4J®/dn, and dipoles of

constant density u(=-®) are distributed over the panels. The source strength o;
on each panel is known through the body no-flux boundary condition. Denoting :
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the continuous integral equation (1) degenerates into a discrete finite order
algebraic system :
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Coefficient matrices [D;] and [S;] (3) are computed by the classical Hess et Smith

formula. Since they are time independent, they are evaluated once for all, and
the first one is inverted at the onset by a gaussian procedure. The solution at
each time step is then obtained by a simple matrix product after updating the
RHS. It requires the computation of convolution products of the past solution
with the Green function and its gradient [see (5)]. The matrices s; and d;; must

be evaluateq at each time step, and stored in order to compute the kernel of the
convolution integral from 0 to the current time ¢. This is the main burden in this
kind of time-domain computations, and the most time consuming.

The original expression (2) is not well suited for numerical evaluation; then, in
the eighties, several authors (Jami 1981, Liapis 1986, King 1987, Newman 1985-1992,...)
developed numerical procedures based on: series or asymptotic expansions, Filon
quadratures, recursive relations,... The first method to be implemented in our
code was based on these formulas (King (1987)); it will be referred to as “series
expansions method” in the sequel.

The second numerical method for the evaluation of the Green function memory
term (2-c) is based on a bi-linear interpolation in a pre-computed table. (Ferrant
1988b, Magee & Beck 1989). This is made possible by the change of variable 1 = KR, in

(2-c) yielding: Fir,z,6)= 2R ["Jy(Ay1-pPre ™ VT sin(VAt)da , (6)
where the integral is a function of only two "natural variables": u=-2z/R, ,

r=t/\R,. This second method, which was already implemented in the original
code, will be denoted: “tabulation method” in the following.

At the last Workshop in Marseille (Clément 1997), we gave a third alternative way
to compute the time-domain Green function and its gradient. It is based on a
general lemma (Clément 1998) which establishes that these functions satisfy very
simple fourth order Ordinary Differential Equation (ODE). It was shown for
instance that F(r,Z,t), is a solution of:
2. ,2.0'F _ 3F (¢? 2F ToF 9.
(r +2Z )—;t-z——zt—:;tT+[z-—4Z)—at—2—+szt—+2F—0 (7)
The spatial derivatives of F satisfy similar ODE, differing only by their numerical
coefficients. Then, since the time grows monotonously in the time stepping
methods considered, these functions may be computed "in-line" by integrating
the ODE with respect to the time variable using standard algorithms like Runge-
Kutta or predictor-corrector. In the present study, second and fourth order
Runge-Kutta methods where tested. (see Fig.3).
The integrals over the panels (4) may then be computed by Gauss point
quadratures rules. Both the one point and the four points rules were tested; it
was found that, for a given final accuracy, the single point algorithm which
requires a finer meshing, was relatively more efficient than the four points, due
to a better approximation of the Rankine part of the solution. We therefore kept
“this one point integration rule in all the computations reported herein.
The impulsive hydrodynamic forces are finally computed as:

M (T)= | jc @,(M', T)n;(M")dcC LT =| L?j? ®,(M", T)n;(M"XC (8)
IRF of a heaving hemisphere.

As a test case to compare the three above mentioned methods, we began with the
simple problem of the heaving hemisphere.
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Fig 1: Floating hemisphere : a 4x49 panels mesh.

The responses functions My, (T) and Ly, (T) resulting from a step vertical velocity
are computed. A typical result for 0<t<20 is plotted in figure 2. Convergence with
the mesh size was investigated by varying systematically the number of panels.
It was found that the mesh illustrated by Figure 1 above (i.e 4x7x7 panels) gave
results converged to within 1% in the vicinity of ¢=1.475, where L, (T) reaches its
maximum value.

The oscillations observed in the tail of the response, for t>6, are the time-domain
counterpart of the well known “irregular frequencies”, and arise from the same
origin. Since we were mainly interested here in cpu time statistics, we did not
tried to suppress this phenomenon by the help of the usual dedicated methods.
This point is left for a further study.

Let us now compare the cpu time required by the three methods of Green
function evaluation (Fig.3). The
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far more time consuming than the
asymptotic expansion which is Fig.2: time-domain “added mass® My(T) , and

used when r>14. When all thf* impulse response function Ly;(T"). dt=0.025, 4x49
couples of points satisfy this panels.

conditions, the program speeds up

and a quadratic behaviour is recovered. The benefit of using the ODE method is
clearly illustrated by Figure 3. One should notice that these curves correspond to
quite long simulations. In the present case of the heaving hemisphere, a
simulation up to ¢=20 should be sufficient from a practical point of view (see Fig.2).
It would result in the computing time shown in the table below, when using a
DEC Alpha 500 workstation, at 330MHz.
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Further results for other differ-
ent floating bodies, including the
ISSC TLP platform, will be given
at the conference.

This first application of the
differential properties of the
time-domain Green function is

’ very encouraging, in a numerical

CPU (sec)

point of view, and we recommend
to use this powerful approach
whenever a numerical evaluation
of this function, or its spatial

derivatives, is needed.

Other applications of the above
mentioned Green function ODE,
in the time-domain and in the
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Fig.3 : Floating hemisphere. (4x49 panels): cpu time

requirement

Method cpu-time (sec.)

series 3398

tabulation | 413 (=1/8)

ODERK4 |211 (=1/16)

ODE RK2 104 (=1/33)
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