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A New Direct Method for Calculating Hydroelastic Deflection
of a Very Large Floating Structure in Waves
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6-1 Kasuga-koen, Kasuga-~city, Fukuoka 816-8580, Japan

1. Introduction

Very large floating structures with shallow draft, considered as an airport, are featured in that the hydroelastic
responses are more important than the rigid-body motions due to relatively small flexural rigidity. Several
methods for calculating hydroelastic responses have been developed; those are categorized roughly into the
mode-expansion method )™ and the direct (FEM-BEM combined) method %)

In the mode-expansion method, the deflection of a structure is represented generally by a superposition of
so-called dry eigenmodes. Then the amplitude of each mode is determined by solving the vibration equation
of a thin plate, with the added mass and damping force corresponding to specified mode shapes computed in
advance. One problem in this method is that an analytical solution of the dry eigenmode, satisfying the free-end
boundary condition along the periphery of a structure, is not yet known. However, it has been recently confirmed
that an orthogonal system of mathematical functions can be used to represent the elastic deflection, and the
free-end boundary conditions can be satisfied subsequently as natural boundary conditions in the process of
partial integrations in solving the vibration equation with a Galerkin scheme.

If our interest is placed not on the contribution of each mode function but on the elastic deflection as a whole,
the direct method is more lucid than the mode-expansion method. However, the direct method is generally
time consuming, because the vibration equation must be solved simultaneously with the integral equation for
the pressure distribution beneath a structure. In most prior works®®) based on the direct method, the vibration
equation has been solved using a commercial software of FEM, and the pressure at nodal points used in FEM
analyses has been determined by means of BEM. Therefore, the relation between the direct method and the
mode-expansion method seems not clear, from a viewpoint of numerical calculation scheme.

The present paper is intended to develop a new direct solution method, which does not rely on the FEM, and

to make clear the relation of the new method with Kashiwagi's numerical scheme!) based on the mode-expansion
method.

2. Mathematical Formulation

Cartesian coordinates are defined with 2 = 0 as the plane of the undisturbed free surface and 2z = h as the
horizontal sea bottom. The incident regular wave comes from the negative z-axis with incidence angle 3.

Time-harmonic motions of small amplitude are considered, with the complex time dependence et applied
to all first-order oscillatory quantities. The boundary conditions on the body and free surface are linearized,
and the potential flow is assumed. The plan view of the structure is rectangular with length L and width B,
and the draft is regarded as zero because of its very small value relative to L and B.

We express the velocity potential, ¢(z,y, z), the pressure distribution, p(z,y), the vertical displacement of
the free surface, {(z,y), and the elastic deflection of a structure, w(z,y), in nondimensional form as follows:

#(x,y,2) = iwa(L/2) ¢/(z,9,2), p(z,y) = pgap/(z,y) }

' - aw M
((@,9) = al'(z,9), w(z,y) =aw'(z,y)

where ¢ is the amplitude of incident wave, w the circular frequency, p the fluid density, and g the gravitational
acceleration. The prime denotes nondimensional quantities, but it will be omitted for brevity in what follows.

The coordinates (z,y, z) are also made nondimension in terms of L/2, and thus the structure exists in the
region of || < 1and |[y| <b=B/Lonz=0. '
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Hydrodynamically, the disturbance due to the presence of a structure can be expressed by the pressure
applied on the free surface. Then the dynamic and kinematic free-surface boundary conditions are given by
3¢ '

p=Ko¢+(, —a;:(' onz=0 2)

where K = w?/g. Note that p = 0 outside of a structure and { = w beneath a structure.

Since the velocity potential can be given by the convolution integral of the pressure, p(z,y), and the Green

function, G(z, y, z), satisfying (2) with p = 0, it is of relative ease to show that the integral equation for the
unknown pressure takes the form

poy) - K / /S p(E,m) Gz — €,y — n, 0) dédn = w(z,y) 3)

where Sy denotes the bottom of a structure with zero draft.
The body boundary condition can be satisfied by writing the deflection of a structure in the following form:

w(z,y) = ws(z,y) +wr(z,y) = - (z,y) + wr(z,y) 4)

where Cr(z,y) = exp{—iko(zcos B + ysinB) } (5)
is the elevation of incident wave, and subscripts S and R mean the scattering and radiation components,
respectively.

Substituting (4) in (3) gives the equation to be solved:

p(z,y) - K / /s p(é, 1) G(x - &,y — n,0) dédn — wr(z,y) = —Ci(z, y) (6)

The radiation component of the deflection, wg(z,y), is unknown and subject to the vibration equation of a
thin plate:

o ot ot

- — Qe o — = - 7
MENug(@,y) + D( 5 + 2523505 + 1) wr(@:9) = ~p(z,9) (7
where M is the mass of a structure (divided by pLBd), D is the flexural rigidity (divided by pg(L/2)*), and

A = 2d/L with d being the draft. ;

Since the structure is freely floating, wg(z,y) must satisfy the free-end boundary conditions along the pe-

riphery of the structure. Those conditions can be written as
62 wr 62 wWgr a 3210}2

62'wR .
S g =0, o { G+ @1 Gg =0

where n and s denote the normal and tangential directions, respectively, and v is Poisson’s ratio.
In the case of a rectangular plate, a concentrated force, stemming from the replacement of the torsional
moment with an equivalent shear force, acts at four corners, which must be also zero. Namely

(8

Owp
8xly

In summary, (6) and (7) are the simultaneous equations for the two unknowns: the pressure distribution
p(z, y) and the vertical elastic deflection wg(z,y). Solving (6) and (7) at the same time while satisfying (8) and
(9) is referred to as the direct method %

If wg(z, y) is expressed in terms of a system of appropriate known functions, w;(z,y) (j = 1,2,---), in the
form

R=2D(1-v) 0 at z==1, y=+b (9)

WR(II, y) = z Xj Wj (x9 y)7 (10)
i=1
the corresponding pressure can be sought from (6) in the form
00
px,y) = ps(x,v) + ) X;ps(z,9) (11)
Jj=1

Here the amplitude X;; is unknown, but can be determined subsequently by solving (7) with free-end boundary
conditions, (8) and (9), satisfied in an appropriate manner. This solution method is referred to as the mode-
expansion method and featured in solving (6) and (7) separately.
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3. A New Numerical Method

In the mode-expansion method developed by Kashiwagi'), the pressure distribution is represented using bi-cubic
B-spline functions. It may be natural in the direct method to express the elastic deflection, wg(z, y), with the
same B-spline functions. Therefore we try to obtain numerical solutions in the following form:

NX+2 NY {2

p(z,y) Z Z ake Br(z)Be(y)

k=0 =0

NX+42 NY+42 (12)
wr(@y) = Y Y. e Be()Be(y)

k=0 ¢=0

where Bi(z) and B,(y) are the cubic B-spline functions. NX and NY are the number of panel division in
the z- and y-directions, respectively. Since one cubic spline function extends its influence over four panels, the
number of total unknowns in each of p(z,y) and wg(z,y) is (NX + 3) x (NY + 3).

Substituting (12) into (6) and (7) and applying a Galerkin scheme with B,(2)B,(y) (p =0~ NX +2, ¢=
0~ NY + 2) as the weight function, we obtain a linear system of simultaneous equations, in the form

NX+2 NY 42

D [ak,{c“) ~KLD, } — e LD ] Roa (13)
k—
NX-22NY+2 ,
S 3 [one flone + me{ ~MEALG L + DL }] =0 (14)
k=0 £=0
where '
£k = ([ Bo@)Bals) Bute) Betw) dody (15)
o= [ BB [[ BeleBetn) Gle - &y ~n,0)dedn] dsy (19
£ = [ BB VB Be)} docty (1
- / /S By(2)By(y) 1 (z,y) dzdy (18)

The stiffness matrix, (17), must be transformed by partial integrations to incorporate the free-end boundary
conditions, (8) and (9). The procedure is the same as that used in the mode-expansion method of Kashiwagi®),
and the result takes the form

£ / / V2 Bpy V2 By dzdy

)/{623 g 02 Bre 623,,,,623“ 2623,,,623k,
Su

52 0 | o 02 Bady Ozdy }d’d” (19)
where Byq = By () By(y) and By = By(x) Be(v).

The mass matrix, Cm) ke» Serves also as the cross-coupling matrix between the pressure and elastic deflection,
which has been computed using Clenshaw-Curtis quadrature with absolute error less than 10~7 required. The
integral 8 )k, given by (16) is the most time-consuming part but the same as that appearing in Kashiwagi’s
mode-expansmn method. Therefore, by taking advantage of ‘relative similarity relations’, it can be computed
with less computational time.

4. Numerical Results

It is confirmed that the present method gives substantially the same results as those by the mode-expansion
method using products of one-dimensional free-free beam modes to represent the elastic deflection.

Since the present method uses only the B-spline functions as a basis function, the computer code is simpler
than the mode-expansion method. However, in the present method, the symmetry relation is not used, and
thus the number of unknowns and the computational time are greater than that in the mode-expansion method
of Kashiwagi.V)
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Various computations have been performed, including the comparison with the experiments conducted at Ship
Research Institute in Japan using a 1/30.8 scale model for a floating structure of L x B x d = 300m x 60m x 0.5m.
Those results will be presented at the Workshop. Here, instead, we show one example of the wave profile around

a structure of L/B = 4. Since the pressure is zero on the free surface, the total wave elevation can be computed
from (2) and (5) by the equation:

¢r(z,9) = Gz y) - K / /S p(€, 1) Gz — €,y —1,0) dédn (20)

Figure 1 is the result computed for L/X = 10 and 8 = 30° in deep water, with NX = 40 and NY = 10.

The flexural rigidity was taken equal to 1.875 x 10~6, which might be stiffer than a realistic floating airport.

~ For comparison, Fig. 2 shows the wave profile around a rigid structure with the same dimensions. We can see

that the wave reflection from an elastic plate is small near the bow and the transmitted wave is visible even

downstream. The pattern of elastic deflection on the plate is different from that of water wave both in the wave
length of fluctuation and the propagation angle.
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Fig. 1: Wave pattern around an elastic plate of Fig. 2: Wave pattern around a rigid plate. Geo-
L/B=4and D= 1875x 1075 L/\ = 10 and metrical dimensions and wave data are the same
B = 30° in deep water. o as Fig. 1.




