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Introduction

Sloshing waves are associated with various engineering problems, such as the liguid oscillations
in large storage tanks caused by earthquakes, the motions of liquid fuel in aircraft and spacecraft, the
liquid motions in containers and the water flow on the deck of ships. These motions are often very
large and their behaviour is strongly non-linear when the excitation is large or when the excitation
is near to the natural frequencies. The wave pattern may behave like a standing wave, a travelling
wave or a hydraulic jump. During the process, large pressures may be created. Here we consider the
sloshing waves in a 3D rectangular tank undergoing translational motions in three directions. The
numerical algorithm is based on the finite element method discussed in the last workshop (Ma, Wu &
Eatock Taylor, 1997).

Mathematical formulation ‘ / ’

A Cartesian co-ordinate system, Oxyz, fixed with the : /
tank is used, Its origin is located at the centre of the free / /
surface, as shown in Figure 1. The displacement of the tank v — +
in x, y and z directions are defined as: ;
M Xp =[x () y () 20)] _ ’
The total velocity potential ¢ can be split into:
Q) ¢p=@+xu+yv+zw L

dx, .
where u, v and w are the components of U = —dt—b in the  Figure 1 Tank and co-ordinate system

x, y and z directions, respectively. ¢ in (2) satisfies the following equations:

3) V=0 in the fluid
4 %‘np—=0 on the side walls
& o A .
—_—= e e on the free surface
S v W W V% ¢ s
o _dd 1o oo . du_ dv_,dw N
© "% 3 2qu Vo-gl ==y Cdt on the free surface

S[x, v, {(x,3.),1] =90, 909 Ty

o o kot
equations are then combined with the initial conditions which can be given as:

(M {(x,30)=0 ¢(x,y,0,0)= —xu(0)~ y»(0)

where { is free surface elevation measured in Oxyz and

Results

In the analysis below, some parameters are nondimensionalized as follows:

(x,y, L, B,a) - (x,y,2, L, BaMd, t = tfdfg , © - o fg/d
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We first consider a 2D case in which L=2,B=0.2 and the motion of the tank is governed by
u(t)= awcos(wr)and v =w =0. Figure 2 shows the history of the wave elevation at x =10 with
a=0.00186 and at four different frequencies either higher or lower than the natural frequency

W, = 1/(n'/ L)tanh(z/L) . It shows that the numerical results are in an excellent agreement with the

linearised analytical solution (Faltinsen, 1978).
The second case considered is a 3D problem in a square tank of L=B=4, which movesin a
vertical direction with an initial horizontal disturbance defined by:

(8) w(t)=w,a,cos(w,t), u(r)=w(r)= {8'0283 :> é)

We have made calculation for four different amplitudes and frequencies. The corresponding wave
history recorded at one corner is presented in Figure 3 where @, given above is also a natural
frequency of this square tank. The wave elevation due to purely vertical motion is theoretically zero.
It, however, can become quite large when a small initial horizontal perturbation exists, as can be
seen from Figures 3b to 3d. Furthermore, these large responses are not in the forced frequency but in
one near to @,. A similar phenomenon was also reported by Su and Wang (1986) when they
considered the motion at about twice the natural frequency.

In the third case , the tank of L=B=8 undergoes only horizontal motions defined as
u(t)=w(7) = aacos(wr) with a=00372 and @ =099%90, . A travelling wave can be observed in
Figure 4 which shows the sequence of a wave crest moving from the corner (-L/2,-B/2 ) to the
comer (L/2,B/2). Figure 5 gives the wave history at the two corners. It can be seen that the
wave can become very sharp. Figure 6 illustrates the pressure history at two points, which behaves
like pulses hitting the walls of the tank repeatedly.

In the fourth case, the tank of L=8 and B =4 is moving with velocities u(7) =, a, cos(w,),

1) = w,a,cos{®,t) and w=0 where 4, =0.0372,a, =0.0186, o, =09999./(/L)tanh(z/L)

and @, =0.9999,/(x/B)tanh(n/B) . Some typical snapshots of the wave profiles are illustrated in

Figure 7. The travelling wave is also evident in this case.
The last case we considered corresponds to very shallow water. The tank of L=B =25 is

moving only in horizontal directions with a, =a, =12 and @, =, =0.998,/(r/L)tanh(n/L) . A

hydraulic jump has been observed in this case, as shown in Figure 8. It should be noted that there are
some higher frequency waves superimposed on the wave system in our case. Huang and Hsiung
(1996) also observed the hydraulic jump based on a shallow water formulation but no higher
frequency waves seem to exist in their analysis. More results will be presented in the workshop.
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