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Non-uniqueness in the water-wave problem:
an example violating the inside John condition
by O. Motygin and N. Kuznetsov
Laboratory for Mathematical Modelling of Wave Phenomena,
Institute of Mechanical Engineering Problems, Russian Academy of Sciences

1. Introduction

During the last decade uniqueness of the time-harmonic solution has been in the focus of much
research in the linearized theory of water waves. A substantial breakthrough was the first
example of non-uniqueness constructed by M. Mclver (1996) in the two-dimensional water-wave
problem. She applied the so-called inverse procedure which determines a physically admissible
domain for a given solution instead of seeking a solution to the problem in a given domain.
Developing this approach P. Mclver & M. Mclver (1997) obtained a non-uniqueness example
for the axisymmetric water-wave problem, whilst Kuznetsov & Porter (1997) constructed a
number of examples with different properties for the two-dimensional problem. Shortly after
appearing the first non-uniqueness examples, one of the authors of the present work has proved
the following uniqueness theorem for the two-dimensional problem (see Appendix in Linton &
Kuznetsov 1997).

Let two surface-piercing bodies be immersed symmetrically about the y-axis in deep water
and satisfy the inside John (1J) condition, that is, any vertical straight line through the portion
of the free surface between the bodies, say Fo = {—b < z < b, y = 0}, has no common points
with the wetted bodies’ contours.

Then the homogeneous water-wave problem has only trivial symmetric (antisymmetric)

solution, if the inequality
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W(m+ziz)§ub§w(m+ziz) (1)
holds with the sign + (=) for somem =0,1,....

This theorem means that the IJ condition is sufficient for uniqueness of symmetric/anti-
symmetric solution within the complementary intervals given by (1) for the non-dimensional
spectral parameter vb. The examples constructed by Kuznetsov & Porter (1997), which include
that of M. Mclver (1996) as a particular case, show that this theorem can hardly be improved.
The reason is that every interval where the symmetric solution is unique contains a subinterval
of vb, for which there exists a two-body structure satisfying the 1J condition and trapping
antisymmetric mode. The same result is shown to be true for the first three intervals where the
antisymmetric solution is unique. Numerical calculations demonstrate that the same should be
true for all intervals of vb, where (1) guarantees the uniqueness of antisymmetric solution.

The aim of the present work is to demonstrate that the 1J condition is not only sufficient,
but also necessary for uniqueness in the intervals given by (1). We consider in detail the interval

(7/2,7), where the symmetric solution u(*) is unique, and outline how our approach works for
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other intervals. The idea of the proof is to construct a pair of bodies violating the IJ condition,

trapping a symmetric mode and such, that vb € (x/2,7) for them.

2. Statement of the problem

The small-amplitude two-dimensional motion of an inviscid, incompressible fluid under grav-
ity is considered. We assume the motion to be w-periodic in time ¢ and irrotational. Thus, it

is described by a velocity potential R.e{u(x,y) e“i“”}, where (z,y) are Cartesian coordinates

with the origin in the mean [ree surface and the y-axis directed vertically upwards.
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Figure 1: A definition sketch of the water domain.

Let W = {—o0o < z < 400, y < 0} \ (D+ U D_) denote the domain occupied by water.
We assume W to have infinite depth and to be symmetric about the y-axis (see fig. 1). Two
rigid surface-piercing bodies D, and D_ are the mirror reflections of each other in the y-axis.
The free surface is denoted by F and consists of three portions, two outside the bodies and
one between them (it was referred to as Fp); the wetted boundary of D, is labelled Sy, and
S=8,US_.

The eigenfunction u corresponding to a point eigenvalue v (usually referred to as trapped

mode solution) must satisfy the following homogeneous boundary value problem:

Viu=0 in W,

VamanY
o
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uy —vu=0 on F,

oufon=0 on S,
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and belong to the class of functions having the finite energy, that is,
J |Vul? d:[:dy+uj lul? dz < oo. (5)
w F .
Without loss of generality, u satisfying (2)-(5) may be considered to be real.

3. Trapped mode solution violating the IJ condition

To formulate the main result we need two functions. We define the first of them as follows:

u(e,y) = (20)7" Gz (2,55 =7/v,0) = Ge (z,y57/v,0)], (6)

where the two-dimensional Green function is given by the usual formula (see Wehausen &
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Laitone 1960)

Gle,y;€,m) = —log |z —n| +log |z — (| + ‘ZJ eklytn) ng—g—(—:f—:—i) dk,
- — v
z=x+1iy, ( = £+ in, and {_ denotes the contour going along the positive half-axis and
indented below at . By the choice of the dipole points the integrals along indentations cancel

in (6), and one immediately obtains that

u(e.y) = etV dr,

v (2 +m/v)2+y? - (x —7w/v)t+y? 0 k-1
where the integrand is bounded because the singularity in the denominator coincide with the
zero of the numerator. Thus, u is a real harmonic function in the lower half-plane. Moreover,
u(x,y) is even with respect to z, and the free surface boundary condition holds for it on
{z # %xn/v, y = 0}. The last integral is bounded as z — +r/v as was shown by Meclver
(1996), and it decays as |z] — oo as follows from Bochner (1959) Lectures on Fourier Integrals,
§8 2,5,8. Thus, u satisfies (5) in every fluid domain W, which does not contain a neighbourhood
of the dipole points (£ /v,0).

The second required function is as follows:

1 [ x+nfv r—7[v ] r° sink(ve — m) — sin k(vz + )

ekvy dk,

1 y Yy % cos k(vz — ) — cos k(vz + )
v(x,y)z-u— (w+7r/z/)2+y2~(a:——7r/1/)2+y2} Jo k—1
that is, v is the streamfunction which corresponds to the velocity potential u, and has an
arbitrary constant term to be equal to zero.

A family of fluid domains W, such that the IJ condition does not hold for W and u satisfies

(2)-(5) in W can be constructed with the help of v. In fact, any streamline may be used
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Figure 2: (a) the value of the streamfunction on y = 0, and (b) streamlines for v.
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as Sy, if it has the following two properties. It connects with the positive z-axis on either
side of the dipole point (7/v,0). The angle directed into W between the streamline and the
positive x-axis is acute on the left of (w/»,0). On fig. 2(b) a number of streamlines defined by
v(x,y) and having these properties are plotted, and on fig. 2(a) the graph of v(z,0) is shown for
convenience. Since v(z,y) is an odd function with respect to z, the reflection of S in the y-axis
is also a streamline which we take as S_. Now, let us formulate the main theorem concerning
the existence of streamlines with these properties.

For every level V. > 0 there exists only one streamline S¢(V) = {(x,y) : v(z,y) = V}
with all internal points in {z > 0, y < 0} and the endpoints (:r.(vi), ), such that mﬁj“ > 0,

(2 - x/v) >0, and 2w > 2x/3. For every streamline S+(V) the 1J condition does not
hold. '

We note that mg}') = b for the water domain W having S (V) and its reflection in the y-axis
as the wetted rigid contours. Thus, we have 27 /3 < vb = ua;(‘;") < = for the defined W. Since
u given by (6) delivers a symmetric eigenfunction satisfying (2)-(5) in this domain W, the
immediate consequence of the main theorem is the following corollary:

The 1J condition is necessary for the interval (x/2,7) to be free of non-dimensional point

cigenvalues vb corresponding to symmetric eigenfunctions.

4. Concluding remarks

We restricted ourselves with the case of symmetric solution and of the uniqueness interval
/2 < vb < w, where 2b is the distance between two surface-piercing bodies along the free
surface. Our choice is not a restriction, and has been made in order to be specific. For either
symmetric and antisymmetric solution and for all intervals of uniqueness (1) examples of non-
uniqueness, guaranteeing the necessity of the IJ condition, can be constructed. For this purpose
the non-trivial potentials proposed by Kuznetsov & Porter (1997) should be modified in the
same way as the potential of M. Mclver (1996) has been modified in § 3.

Furthermore, the similar method works in the case of axisymmetric problem. Modifying
the non-uniqueness example proposed by P. Mclver & M. Mclver (1997), one easily obtains
that the IJ condition is necessary for the uniqueness theorem proved by Kuznetsov & Mclver

(1997) to be true in the axisymmetric problem.
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