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Experimental and numerical second order diffracted waves around
an array of 4 cylinders.
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1. Introduction

The diffraction of regular waves around an array of 4 vertical cylinders is investigated.
Results from existing theoretical models are compared with experimental data acquired in the
frame of a french CLAROM project started in 1996. Encouraging results are obtained for both
first and second order quantities in the limit of small wave steepness.

Another aspect is also emphasized concerning the existence of high localised second order
wave elevations in the spacing between the two front columns. The computations show that
second order maxima is only due to diffraction and they occur precisely where the first order
envelop vanishes. The existence of trapped modes may explain tﬁese resonant like phenomena.

In the following developments, the experimental set-up is first described, then the two
d}ilﬂ"erent numerical approaches are outlined. Some significant results of comparison are finally
shown.

2. The experimental set-up

The set-up (described below). is simply composed of bottom mounted vertical cylinders of
circular cross section. One of the longitudinal walls of the basin is used as a symmetry plane;
the TLP model is thus composed of 2 cylinders at incidence 0°. With this choice the problems of
blockage are practically avoided and it significantly reduces the perturbation due to the reflected
waves on the opposite longitudinal wall. An additional wave absorber is placed on this wall.
These precautions are necessary to obtain a sufficiently long period for data acquisition without
spurious harmonics. This is of crucial importance particularly when second order quantities are
to be measured. Seven wave gauges are placed in the vicinity of the four columns as described
below.
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3. The numerical tools

The second order diffraction problem can be formulated for the corresponding potentiel ¢(D2)
as follows:

(Ag) =0 in the fluid domain
g,)z = “—‘;’2¢§§) =a'? + o on the free surface z =0
P g,),. = —45(12,2 on the cylinders (1)
g,)z = on the sea-bottom z = —h
L Rad(d)g’) in the far field

The 2" order incident potential qb([z) is known analytically. The right hand side of the free

surface condition exhibits in the far field two wave interactions; here oi* and a® correspond
to the interactions incident/diffracted and diffracted/diffracted respectively. The radiation
condition usually follows from an analysis of the far field wave decomposition into free and
locked components. . .

To solve this BVP, two different numerical approaches are used: semi-analytical formula-
tions and numerical diffraction programs developed in the frame of potential flow theory. Both
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approaches use semi-analytical first order solutions to account for the interaction of cylin-
ders. The formulation by Mclver & Evans (1984) is approximate and the other one by Linton
& Evans (1990) is exact. Discrepancies exist and some of them are exposed here and in Scolan
et al. (1997).

The second order semi-analytical approach uses the Linton & Evans’ first order solution.
It is based on the decomposition of the second order potential into several potentials, each ver-
ifying a particular Boundary Value Problem (BVP) solved semi-analytically. This is presented
in Malenica (1997).

The other approach is a full numerical solution of the BVP expressed above by using an
integral equation and the Rankine Green function (see Scolan 1989). The main aspect concerns
the radiation condition which is based on the decomposition of the far field into locked and free
waves (see Molin 1979).

4. Some results

Figures (1) compare the numerical or experimental total second order quantities. Those in-
clude the incident and diffracted components (noted ngz) and ng) respectively) and the quadratic
contributions (noted ng()l)) coming from first order.
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Figure 1: (left) modulus of the 2"¢ order wave elevation vs period (sec) at gauge N°5, radius
0.280 and spacing 1.334; experimental data are marked for different wave steepnesses; (right)
numerical and semi-analytical real and imaginary parts of (2.

The plotted quantities are non dimensioned with kA? where k and A are the wave number and
the incident wave amplitude respectively. The highest second order elevations n?/kA? ~ 8

occur at the gauge N°5 (z/d = 0.39) and at about T' = 1.5s. The shift of period illustrates the
differences between the two first order formulation. The overall trend is however very similar.
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Figure 2: locations of ) modulus minima at mid-point between the two front cylinders.
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A study of the second order wave pattern shows that localised high elevations occur between
the two front cylinders. This could suggest resonant like phenomena somewhere between the
cylinders. A more precise study shows that first order wave elevations vanish in the same
area. Hence a parametric study should first provide couples of spacing and wave period for
which there exist areas where first order elevations vanish. Such locations are determined
along the symmetry axis (y = 0) and between either upstream or downstream cylinders. For
example figure (2) shows the locations in the plane (spacing, period) of the n) modulus minima
calculated exactly at the mid-point between the two front cylinders. Computations are thus
performed for different couples ranging along a line which joins the 2 points (1.0,1.348) and
(1.25,1.48). As a matter of fact, the obtained results (not reproduced here) show the same
characteristics. To illustrate this the total second order wave pattern is plotted in figure (3)
for the data d = 100 and T = 13.48 with the radius a = 28 (corresponding to a geometry 100
times larger than the model one). A spot of high elevation is clearly noticeable exactly between
the two upstream cylinders. A question arises whether this is due to forcing term of the free
surface condition or this is due to pure diffraction. For that in the left figure, the 1°* order
elevation is compared to the different 2°¢ order quantities. One may note that:

e the second order diffraction is clearly the dominant contribution,

o this component reaches its maximum precisely where the total 1% order elevation vanishes,
e the 2™ order diffraction is the only explanation for this local effect since the quadratic

terms bring almost negligible contribution even if it is thought that V2¢(!) should contribute
significantly,

e the 1* order elevation, the right hand side (o*¢ + a?®) and the mean value have a very similar
variation along the axis,
e the forcing term of the free surface condition seems not important enough to explain this
phenomenon.
Another couple is then computed for a different location of vanishing first order elevation; the
listed conclusions above seem confirmed as shown in figures (42 Here one should note that the
forcing term of the free surface condition decreases significantly at the location of interest.
From the first studied data (see figure 3) one can compute the positions of the near-trapped
modes (if existing) associated to this configuration. This is dane by calculating the force acting
on each cylinder. This force (F') is usually made non dimensioned with the force (F}) acting on
a single cylinder in isolation as it is done in Evans and Porter (1997). From our computations
a very sharp peak of force (F/F, ~ 12) is observed at ka =~ 0.7957 corresponding here to
T = 11.9s and for a spacing d/a = 2.5 (made non dimensioned with the cylinder radius). This
result must be considered with precaution as the approximated first order solution is used.
However, as the spacing increases the peak of force is shifted towards higher periods. For
the present spacing d/a & 3.57, a peak of the force (F/F, =~ 1.6) is at about T = 13.7s. This is
close to the first order incident wave but far from the period of the corresponding second order

free wave system. A parametric study by varying both the spacing and the period should bring
some more elements of answer. Those will be presented at the workshop.
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Figures 3: variation of the contributions to the free surface elevation
In?|, 192, [ng()l, [, mean value, |7{!)|, right hand side of the free surface condition o'¢ 4 o%;
gap/radius= 100/28 and T = 13.48s
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Figure 4: see caption above; gap/radius= 106/28 and T = 11.8s




