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WATER WAVES BENEATH A FLOATING ELASTIC PLATE

by Ken Takagi
Dept. of Naval Architecture and Ocean Engineering, Osaka University

1. Introduction

Recently the estimation of elastic motion of a very large floating structure (VLFS) has been carried
out for the Mega-Float project in Japan. Dimensions of the floating structure in this project is 5,000
m length and 1,500 m width. The typical wave period of the installation point is 6 seconds. Several
reliable numerical works have been completed, however it was very tough job to obtain the reliable
result since the length of incident waves is very short compaired to the dimensions of VLFS. Following
the numerical results, it is found that the elastic motion of VLFS is seems like a propagation of
water waves beneath a thin elastic-plate. However, since those numerical works are based on the
modal analysis, it is difficult to imagine a image of the motion of VLFS as propagating waves before
summing up each modes. Therefore, another approach is needed to make simple image of the motion
of VLFS. Ohkus and Nanba [1996] treated this problem as a wave propagation beneath a thin elastic-
plate and presented a free surface condition which is imposed on the region covered with the plate.
Helmans [1997] also presented a similar treatment in which he applied the assumption of very short
wave length. In the present paper, a similar free surface condition for the region covered with the plate

is applied and a Green function of that problem is derived. The eigen function expansion method is
evolved from Green's second identity.

. 2. Free Surface Condition

Suppose a flat floating platform of draft d (d = 1 ~ 2m in Mega-Float project) located in the x-y
plane which coincides with the still water surface. Following previous works, the assumption of d/\ <« 1
is applied. Since the motion of the fluid is supposed to be invicid, irrotational and incompressible. The
velocity potential satisfying Laplace's equation is introduced. Further assumption is that the motion
is sinusoidal with the angular frequency w.

Thin elastic plate theory gives the equation of the vertical displacement ¢ of the plate.
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Where, m is the mass of unit area of the plate, p the demsity of the water and g the gravitational
acceleration. D is the flexural rigidity of the platform given by D = ET3/12(1 — v?). Where T is the
thickness, E the equivalent Young's modulus of the plate and v Poisson’s ratio. Since the mass of
plate is uniformly distributed, it is obvious that the left hand side of (1) is negligible.

Substituting the body boundary condition of the plate into equation (1), the free surface condition

is obtained.
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Where, 3 = D/(pg) and K = w? /g. In the two-dimensional case the free surface condition is reduced
as follows:

o\ 9¢
_K¢+(1+,@-a—x~z>3;-0 on z2=0 (3)
Where, 8 = % and ET presents the bending rigidity. Suppose the plane progressive waves on the
plate floating on the water of depth h. Where the water depth is assumed to be as same order as the
wave length. The following dispersion relation is obtained.

K = o(1 4 Bo*) tanh oh (4)

It is apparent that two roots of equation (4) are located on the positive and negative real axis and

innumerable roots are located on the imaginary axis. Other four roots are also found on each quarter
planes.

3. Two-Dimensional Green Function

A two-dimensional Green function which satisfies Laplace’s equation, the free surface condition (3)
and the bottom condition is obtained as follows:
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Where, ap(n = 0,1,2---) denote the roots of equation (4) located in the lower half plane. Applying
Green'’s second identity to the region z < 0, the following integral equation is obtained.
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Where, it is assumed that the plate is infinitely long and covers all left half plane. The regular radiation
condition is imposed on the left end boundary.

If the boundary condition at z = 0 and the end conditions of the plate are given, above integral
equation would be solved.

4. Eigen Function Expansion

If the integral appeared in equation (6) can be carried out in advance, the following series expansion
would be obtained.
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Orthogonality . .
The eigen functions appeared in equation (7) are not orthogonal. However, the following relations
are obtained.
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Where,
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5. Examples of 2-D Problem

Transmission and Reflection of Incident Waves
When plane waves incident on the elastic plate, same are reflected at the edge of the plate and others

are transmitted into the region covered with the elastic plate. The velocity potential is represented
by the series of eigen functions in the region z > 0.
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Where, k,, denotes the roots of the disparsion relation of water waves.
K = kytanhkph (14)

The velocity potential in the region = < 0 is represented by the series expansion (7).

It is well known that the eigen functions appeared in equation (13) are orthogonal. Therefore,
employing the condition that the velocity potential and the horizontal velocity are continuos at the
matching boundary, we can get the same number of equations as the number of coefficients R, and
T,.. However, we also have other unknowns ¢, and ¢. The end condition of the plate i.e. the shearing
force and the moment at the end are free gives the following two equations.

o0 00
Y. adTh=0, Y diT,=0. (15)
n=0 n=0

Then, the problem can be solved, since the number of equations is as same as the number of unknowns.

Reduction of Transmitted Waves

It is strongly required that the motion of VLFS must be very small. However, it was found in the
previous works that the motion of VLFS is not negligible. Then, some ideas for the reduction of the
motion is proposed. One simple method is attaching a plate or block at the tip of the VLFS to block
the transmission of incident waves.

Suppose a block of draft d and bredth 2b attaching at the edge of the plate, the velocity potential
under the block is repr&sented as follows:
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Where, [ = h — d, Z the heave amplitude and © the roll amplitude. The equation of motion of the
block is given by
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Where, Fy and My are fluid dynamic forces, W weight of the block, GM metacentric height and Igg
moment of inertia of the block. End conditions of the plate are given by

_de
1 -— d—m"- (18)

Now the number of equations is as same as the number of unknowns. We can get the solution.

Z-b0=¢

6. Conclusions

The treatment of the motion of VLFS as a propagation of water waves beneath a elastic plate

is presented in this paper. Some examples of solution for the two-dimensional problem are shown.
Further results will be demonstrated at the workshop.
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Fig.1 Transmission coefficient at the edge of infinitely long elastic plate.
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