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INTRODUCTION

Impulsive free-surface flows provide opportunities for
studying analytically the early evolution of hydrodynamic
nonlinearities. This type of research started with the
wavemaker analysis of Peregrine (1972). The wavemaker problem
is difficult because of the free-surface singularity arising
at the intersection between the free surface and the moving
plate. This singularity reveals that the asymptotic series is
not uniformly valid. The Taylor series in time constitutes an
outer expansion, and an inner expansion must be introduced to
remove the singularity (King & Needham 1994). When the
impulsive free-surface flow is due to submerged objects, one
avoids free-surface singularities.

The present paper introduces a new variety of impulsive flow
problems: a given flux through a fixed bottom is turned on at
time zero. The present model is one of the cases where the
exact surface elevation of a small-time expansion can be
calculated to third order. Other examples are the submerged
line vortex (Tyvand 1991), and the line source, either
submerged (Tyvand 1992) or located at a bottom (Tyvand 1998).
The solution for the submerged line source has been verified
numerically by Kim (1997). A review of small-time expansions
for impulsive free-surface flows is given by Tyvand & Miloh
(1998) .

We will investigate the evolution of nonlinear free-surface
effects at the border between a region of forced uniform
upwelling and a region of stagnant fluid. For small times the
initial depth is the only characteristic length. This implies
that all early nonlinear effects will be localized within a
few length units around the edge between upwelling fluid and

stagnant fluid. The early wave generation must also take place

at the edge of the upwelling region. But the later wave
propagation away from this edge cannot be captured by our
analytical small-time expansion.

MATHEMATICAL FORMULATION

We consider an inviscid fluid layer of constant depth which is

at rest at negative times. The layer depth h* is the only
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length scale of the initial flow problem. So the Froude number
F is defined as

F = W*(g* h*)™”? (1)

The gravitational acceleration is g*, and W* is the upwelling
fluid velocity plus the downwelling fluid velocity. In
general, the fluid is upwelling along the bottom for positive
X and downwelling for negative x. From now on we work with
non-dimensional quantities based on the units W* and h*.

The inviscid flow is governed by Laplace's equation for the

velocity potential ®(x,y,t). The surface elevation is nix,t).
The free-surface conditions are:

m/dt+ V@ -V1n = od/dy at  y = n(x,t) (2)
D/ot + (1/2) V@] + F?qn =0  at y = n(x.t) (3)

As initial state we take an impulsive start from a situation
at rest with a horizontal free surface:

nix,0) =0 (4)
®(x,0,0) =0 (35)

The dimensionless upwelling and downwelling velocities for
positive and negative x will be denoted by V, and V_,
respectively. By definition we have V, + V. = 1. The
impulsively forced flow is given by:

oP/dy =V, , y=-1, x>0, t>0 (6a)
oP/dy = - V. , y=-1, x<0, t>0 (6b)
RESULTS

The velocity potential and surface elevation are expanded as
Taylor series in time (Tyvand 1991):

(®,n) = H(t) [(P,,0) + t (®,7m,) + t° (D,,M,) + ..] (7)

H(t) denotes the Heaviside unit step function. We choose to
develop the solution in terms of a Fourier series with an
artificial periodicity of length L in x-direction. Then the
first-order elevation is (sum taken over positive n):

M, = (V,-V)/2 + 2" X n* sech (2nn/L) sin (2nn x/L) (8)
n odd

The exact solution in the limit L->e is:
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o0

M, = (V,-V)/2 +2x" X (-1)* arctan [x/(2k-1)] (9)
k=1

This exact solution is found by differentiating the bottom
source solution (Tyvand 1998). The convergence of eq. (8) is
good when L>20. The second-order elevation consists of one odd
and one even function of x:

n2(x) =n2,odd +n2,even (10)

nz,odd = (11a)
Lt (V. - v,) X sech (21t n/L) tanh (27 n/L) sin (27tnx/L)
n odd

nz.even = (11b)
- (r L) ¥ ¥ [ (m*-n"') tanh (2% (n-m)/L) cos (27 (n-m) x/L)
n,m odd

- (m™+n™) tanh (27 (n+m) /L) cos (27 (n+m) x/L) ]

sech (2tn/L) sech (2Tm/L)

Both these terms are important except for the case of
antisymmetric upwelling/downwelling (V,= V. = 1/2), where the
odd term vanishes.

In this note we omit the third-order terms due to nonlinear

(F)

interaction. We consider only the gravity-dependent term 1, ,
where superscript F refers to Froude number. It is
proportional to the odd contribution to the second-order
elevation:

3 Fn,”™ =2 m,.. (evaluated for pure upwelling) (12)

In figure 1 some snapshots of the total surface elevation to
third order is shown, for pure upwelling: (V,, V) = (1,0). The
Froude number is 0.5.

REFERENCES

Kim, M.-J. 1997 Numerical study of dip formation using sink
array model. Submitted to Int. J. Modern Phys. C.
King, A.C. & Needham, D.J. 1994 The initial development of a
jet caused by fluid, body and free-surface interaction.
Part 1. A uniformly accelerating plate. J. Fluid Mech.
268, 89-101.
Peregrine, D.H. 1972 Flow due to a vertical plate moving in a
channel. Unpublished note.
Tyvand, P.A. 1991 Motion of a vortex near a free surface.




154

Abstracts: 13th International Wérkshop on Water Waves and Floating Bodies

J. Fluid Mech. 225, 673-686. (Appendix by R.P. Tong) .

Tyvand, P.A. 1992 Unsteady free-surface flow due to a line
source. Phys. Fluids A4, 671-676. .

Tyvand, P.A. 1998 Impulsive free-surface flow due to a
line source at a bottom. Manuscript.

Tyvand, P.A. & Miloh, T. 1998 Small-time asymptotic free-

surface hydrodynamics. To be published in J. Engng.
Math. :

g | ]

I\

>
-~
>
~

w*

Figure 1: Snapshots of free surface shape y=n(x,t), to t@ird
order in the small-time expansion. Pure upwelling:

(V,, V.)=(1,0). F=0.5. Increments of 0.2 are chosen
in the dimensionless time t (= t* W*/h*).




