Line integrals on the free surface in ship-motion problems
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Very recently, one important result obtained in [1] relates the singular and highly-oscillatory properties of
the ship-motion Green function. Further to the asymptotic analysis performed in this study which gives, in an
analytically closed form, the complex-singular and highly-oscillatory terms of the ship-motion Green function
when a field point approaches to the track of source point, we consider now the line integrals on the free surface
involving these peculiar terms. It will be shown that the line integral at infinity disappears effectively and the
waterline integral can be evaluated in an analytical way. This study is expected to be a signal of the beginning of
a happy end to the long march during which a major stumbling block hindering the development of reliable and
practical calculation methods is, as reported in [2] and [3], associated with these peculiarities of the ship-motion
Green function and its subsequent integrations along the waterline on the free surface.

1 Properties of the ship-motion G.F. and line integrals on the free surface

The ship-motion Green function is expressed by the sum of a term corresponding to Rankine singularities and
another accounting for free-surface effects. The free-surface-effect term can be further decomposed into a wave
component and a local component which decreases rapidly in the far field, as shown in [4]. Furthermore, every
wave system of the wave component associated with each dispersion curve is expressed in [5] in a simple and
analytical form. According to the study presented in [6], we may classify three classes of unsteady ship waves.
One associated with a closed dispersion curve is called ring waves. Another associated with the portion of
open dispersion curves limited between two inflexion points located symmetrically in the upper and lower half
Fourier plane, is usually called transverse waves. Both classes of ship waves behave in a similar way such as their
amplitude decreases at a rate like O(h"%) for large values of horizontal distance h from the source, although
the transverse waves are limited within a wedge while the ring waves propagate out in all directions for limited
values of the Brard number 7 < 1/4. The third class of unsteady ship waves is associated with the portions of
open dispersion curves from the inflexion points to infinity, and usually called divergent waves. The divergent
waves behave in a particular way. Although the decreasing rate is the same as O(h~%) in a given direction within
the wedge and O(h~%) along the wedge as well as the transverse waves, their amplitude decreases exponentially
for a field point (£,7,¢) approaching to the track of an immerged source point (z,y,z<0). Furthermore, when
a field point approaches to the track of a source located at the free surface (z = 0= ¢ and |p—y| — 0), the
divergent waves are highly oscillatory with infinitely increasing amplitude and infinitely decreasing wavelength.

These peculiar properties of the ship-motion Green function is analyzed in [1] by developing asymptotic
expansions of the open dispersion curves at large wavenumber. The asymptotic analysis of the wave component
contributed by the leading asymptotic term of a parabolic form shows that unsteady ship waves are highly
oscillatory and singular when a field point approaches to the track of the source point at the free surface. The
highly-oscillatory property and complex-singular behavior of unsteady ship waves are further expressed by (23),
(26) and (27) in [1] in an original and analytically closed form. We rewrite the leading term given by (23a) in
[1] here for (+z=0
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in which (X,Y)=(f~z, |n—y|)/F?, F=U/+/gL is the Froude number with U ship’s speed, L ship’s length and
g the acceleration of gravity and 7=wU/g with w the wave encounter frequency. Noting that the term G given
by the expression (1) exists only for X <0, i.e. £<z in the downstream of the source point.

Within the framework of solving boundary-value problems governed by the Laplace equation, the velocity
potential ¢(¢,7,() can be represented by the integrals over all boundary surfaces including the body boundary,
the free surface and a fictitious surface enclosing the body and at infinity. For the ship-motion problem, the
free-surface integral is further converted into two line integrals by using the Stokes’ theorem

W + Soo = ( f - / ) [(F?¢s +127¢)G — F2¢ G| t, dl ()
w o
where ¢w = [;,(-) dl stands for the waterline integral and ¢oo=—[_(-) d! the line integral at infinity. Further-

more, d! represents the differential element of arc length and ¢, the component of the unit vector i= (tz,t4,0)
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tangent to the waterline and the line at infinity, is oriented clockwise. As already noted, the ship-motion Green
function G contains several components plus the singular and highly-oscillatory term G represented by (1). It is
assumed that the terms other than g do not induce any difficulty in both mathematical analyzes and numerical
evaluations, so that only the term G given by (1) are used in the following asymptotic analysis of the line integral
at infinity and in the evaluation of influence coefficients corresponding to the waterline integral.

2 Asymptotic analysis of the line integral at infinity
In previous studies, the argument that ¢ — 0 at infinity as required by the radiation condition is usually used
to say that the line integral o in (2) vanishes. More elaborately, it is assumed that both ¢ and G decrease
at the rate of order O(h™*) and the integrals at infinity (surface or line integrals) disappear formally for a=1
in the case without free surface effects, and for any values of a > 0 with free surface effects (a =1 /2 for ring
waves for example) via an analysis using the method of stationary phase. We have, however, a singular and
highly-oscillatory term (1) included in G such that the methods used previously are not applicable, and that
previous analyzes may not be complete.

To complete the task, we perform an asymptotic analysis of the line integral at infinity by considering a
closed curve of rectangular form with length sides located in — A<z < A at y=+B and width sides located in
—B<y<B at z==%A. The line integrals along the length sides y=+B are nil since t, =0, hence

B
Poo(&m) = /—B ([(Fz¢z +127¢)G — F2¢ Gz]z:A - [(F2¢z +127¢)G - F2¢Gz]z=—A) dy (3)

along the width sides z==+A4 only. In (3), the values of (£,n) are those over ship’s hull or a field around the

ship, i.e. /€247 < (4 or B) so that we may take £ =0 =17 without loss of generality. Along the upstream
side z = A, ¢ decreases at the rate of O(h™!) for the local component or O(h~!/2) for ring waves at 7 < 1/4
while X = (6—z)/F?=—A/F? so that G by (1) is applicable. Along the downstream side z = —A, the Green
function G behaves like O(h~!) for its local component or leading terms of ring waves of order O(h~1/2) which
exist for 7<1/4, and G doesn’t contain the term G since X =(¢—z)/F2=A/F? > 0. As already noted, we are
limited to analyze only line integrals involving the term G so that the line integral at infinity (3) is estimated as
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along the upstream side z = A, where Cy and C, dependent on values of F', 7 and distributions of ¢ and ¢,
along the side z = A are assumed to be of order O(A~!/2) since the leading terms in ¢ and ¢, are of order
O(h~'/?) with h=+/A%+y? along the upstream side X = A as foregoing analyzed. Now the question is whether
Iy and I; are finite. Introducing (1) for G into Iy and I; of (4), we have
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Using the change of integral variable Y = Ae* with A= A/(F2+/2), both integral I;(A) defined by (5) and I, (A)
by (6) can be evaluated analytically for B— 0

Io = ~2V7e AP E §, jp(A) and PRI =ity — Varem APV A Y, 5 (A) )

where J;/, and Y/, are the Bessel functions defined in [7]. It follows from the asymptotic expansions (9.2.1)
for J; /2 and (9.2.2) for Y; 5 in [7] that the absolute values of I and I; are

I =2v2 and F*|I|=2V1+272 (8)

effectively finite for A — 0o so that the line integral given in (4) |¢oo|=O(4~/?) =0 at infinity, since Cp and
Cy in (4) are of O(A~1/?) as already noted. Another integral on a fictitious surface at infinity can be analyzed
in a similar way by using the expression (23a) given in [1] to express the highly-oscillatory term. This surface
integral at infinity is expected to disappear as well since the singularity of the integrand is mucl} wgaker than
the present line integral. This comfortable result is desirable and confirms that the velocity potepmal is correctly
represented by source and dipole distributions on body boundary surface and along the waterline.
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3 Analytical evaluation of the waterline integral

The waterline integral given in (2) is now considered. For the sake of simplicity, we denote o= F?¢ + i27¢ and
0=—¢ along the waterline and write the waterline integral in (2) by

dw = / cGdy + / SF2G, dy (9)
w w
Furthermore, we suppose a linear distribution of ¢ and § as
c=09+0Y and d=6,+4,Y (10)

along a straight segment described by X = X,+X,Y within Yo <Y <Y; where X <0 is assumed. Introducing
(1) for G and (10) for o and § into (9), we have
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2 4
whose numerical evaluations are not a easy task. Indeed, the highly-oscillatory behavior of the integrand in
(11) induces large numerical errors due to dramatic cancellations between very large values with opposite signs
in using a quadrature algorithm. The approximation in usual approaches to represent a segment of waterline
by its centroids or any other points is simply wrong, according to the analysis in [3]. A rational and robust way
to evaluate (11) is to perform integrations analytically. In fact, (11) can be expressed by
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in which B+ = e+#XoX1/2+7/4) and the following notations are used

Ao =|Xol\/X3/4+1/2-7X1, By = (2/\Xol)\/X2/4+1/2—7X;

Ay = |Xol\/X2/4+1/247X,,  Bi = (2/|Xol)y/X2/4+1/247X,

Furthermore,
Ku(A,BY)If = Ku(A, BY:) — K,(A,BY,) for p=-1/2,1/2,3/2 (13)

and K, (u,v) is the complex conjugate of K,(u,v) which is defined by

v . X 20
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where I'(a, w) with a = —(u+n) and w =1u/v is the complementary incomplete Gamma, function defined by
(6.5.3) in [7]. The Gamma function I'(a;,w) can be evaluated by using the series developments (6.5.29) in [7]
for small to moderate values of |w| and the asymptotic expansions (6.5.32) in [7] for large values of |w|.

4 Discussions and conclusions

In this study, we have first summarized the result obtained in [1] about the singular and highly-oscillatory
properties of the ship-motion Green function. The leading term is rewritten by (1) when both field and source
points are located at the free surface, and contained in the ship-motion Green function for the field point close
to the track of the source point but not necessarily far away in the downstream. One interesting feature of
(1) is that its dependence on the parameter 7 is as simple as a modification by multiplying exp(—i7X) of the
corresponding term for the Neumann-Kelvin steady flows which has been studied in [8] and [9], since other
variables involved in (1) are independent of the frequency f =w+/L/g (and 7 = fF). This simple result is
explained in [1] to be associated with the fact that the leading term of asymptotic expansions of open dispersion
curves at all values of 7 is of a parabola symmetrical with respect to the line F?a =7 in the Fourier plane, and
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that the translation of the origin of Fourier plane to (7,0) yields this oscillatory factor. The real and imaginary
parts of F2G for 7=1/5 and at X =~5 are illustrated in Fig.1 by the solid and dashed lines, respectively.

Fig.1 Singular and highly-oscillatory term F2G (X,Y) given by (1)
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This new finding of the ship-motion Green function has motivated us to study the line integrals on the
free surface arising from an application of the Stokes’ theorem to the free-surface integral. The line integral far
from the ship is analyzed by considering a rectangular contour. The asymptotic analysis of the integral along
the contour confirm that the line integral at infinity involving G disappears effectively. More critically, the line
integral along the ship waterline is evaluated in an analytical way. The analytical integration of the singular
and highly-oscillatory term involves a special function K, (u,v) which is regular and depicted in Fig.2a and
Fig.2b for the real and imaginary parts, respectively. In both Fig.2(a,b), the solid, dashed and dot-dashed lines
represent respectively K_; /»(u,v), 5Ky /2(u,v) and 50K3/5(u,v) at the value v=1/5.
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The analytical expression (12) developed for a linear distribution of singularities along a straight segment
is no singular and its extension to a more elaborate high-order representation of singularities and ship’s hull
and waterline geometry can be performed following the same spirit. Indeed, the present study provides critical
and fundamental elements needed in implementing high-order (quadratic, for example) panel methods to solve
the ship-motion problems.
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