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Abstract

It is shown that in the thin infinite plain channel filled by inviscid
incompressible fluid with an elastic plate on the bottom there are both
moving waves and standing waves localized in the region of the plate.
Non-linear effects due to the free surface of the fluid are studied. Using
rigorous perturbation theory the dependencies of all main charactistics
of the system on the amplitude ¢ of plate oscillations are found as a
power series of . It is shown that the amplitude of moving waves may
be also presented as a power series of &. We can vanish the first term
of this series by the choosing of plate width. In this case the amplitude
of standing waves will be proportional to €%, whereas the amplitude of
moving waves will be proportional to £2.

Starting from the pioneering paper by F. Ursell [1] where the exis-
tence of trapped modes was first demonstrated, this phenomenon is of
great attention in many systems. But the most of theoretical consid-
erations concern only with the linear approximation [2]-[5], therefore,
non-linear effects of trapped modes is not clear understood. In order
to investigate the role of non-linear effects we consider the simplest
case that is the thin plane channel filled by inviscid, incompressible
fluid with an elastic plate on the bottom. Non-linearity arises from
the free surface of the fluid.

It is shown that in this case the dimensionless wave profile u(z, 7)
is described by the Boussinesq equation with additional term corre-

sponding to the oscillating plate

3
Uyy — Upr — w? sinwr - 6(z) + ‘2-€(U2)zz + guzm'f =0, (1)

41




where z and 7 are dimensionless coordinate and time, 6(z) is the theta-
function
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(elastic plates begins at the point z = —1 and finishes at the point
z = 1), € is the small parameter that equals to the amplitude of plate
oscillations &y divided by channel depth H, § is the squared division
of channel depth H by plate size a (¢ is assumed to be small enough).
In the linear approximation when € = 0 moving waves are of the
amplitude sin(wy/+/1 — 6w2/3). Therefore, moving waves do not exist
only in the case of sin(wp/+/1 — 6w?/3) = 0 (trapped modes) or

k
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(k = 1,2,3,...). But the non-linear term disturb this result. In
the framework of rigorous perturbation theory [6] it is shown that
the trapped modes in zeroth approximation exist as well, but the
trapped frequencies and required mass M of the plate should depend
from the amplitude of oscillations &. Moreover, in the first-order
. . . . . sin!&(kw)sl
approximation the moving waves with the amplitude S(emy - appear.
In principle, we may equate this term to zero by the choose of § and
provide the trapping modes in the first approximation too. Finally, in
the first-order approximation (already in dimensional terms) we have

for w = wy
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In the case when the amplitude of moving waves equals to zero in the

first-order approximation we have for the plate mass M = My, where
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g is the gravity acceleration, s¢ is the elastic rigidity. Thus, although

the non-linear effects disturb the trapping modes, choosing the geom-
etry of channel and plate we may provide the effect of trapping modes
in the first-order approximation in terms of ¢ (the amplitude of the

moving waves will be proportional to €2).
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