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The plane unsteady problem of deflection of a cylindrical circular shell in collision with an ideal incom-
pressible liquid is considered. The Wagner approach and the method of normal modes are used to take into
consideration fluid-structure interaction. The analysis is focused on strain-time histories of the inner surface of
the cylinder. The computed results are compared with the model experiments by Shibue et al. (1994) for steel
shells and by Arai & Miyauchi (1998) for an aluminium shell. The predicted elastic response agrees fairly well
with the measured response for the steel cylinder with high rigidity and not so good for the cylinders with low
rigidity.

Hydrodynamic loads on entering shells peak just after the impact and decay with time. The strains ap-
proach their maximum values much later, when the hydrodynamic pressures are already low. The time, when
the strains reach their maximum values, can be estimated as a half of the period of the lowest mode of the
cylinder vibration. For cylinders with high rigidity this period is small, which indicates that the strains peak
at small penetration depth, where the Wagner theory can be used to evaluate the hydrodynamic loads. At the
initial stage of the impact the deformations of the liquid volume are infinitesimal, which allows us, as a first
approximation, to put the boundary conditions on the undisturbed initial level of the liquid and to linearize
them and the equations of motion near the initial rest state.

1. Formulation of the problem

Initially the liquid is at rest and occupies a lower half-plane (3’ < 0), and the elastic cylinder touches its free
surface (y' = 0) at the single point taken as the origin of the Cartesian coordinate system 2’0y’ (dimensional
variables are denoted by a prime). At the initial instant of time (¢ = 0) the cylinder of radius R starts to
penetrate the liquid vertically with its initial velocity being V. The shape of the entering cylinder and the
cylinder velocity are changed owing to the interaction of the elastic cylinder with the liquid. The presence
of the contact points between the free surface and the elastic body is the main feature of the problem. The
positions of these points are unknown in advance and must be determined together with the liquid flow and the
shell deflections.

We shall determine the elastic cylinder deflection, the bending stress distribution and the contact point
positions under the following assumptions: (i) the liquid is ideal and incompressible; (ii) the liquid flow is
plane, potential and symmetrical with respect to the y'-axis; (iii) the shell thickness is constant and small in
comparison with the other two dimensions; (iv) external mass forces and surface tension are absent; (v) the
period T of the lowest elastic mode vibration of the circular shell is small compared with the ratio R/V; (vi)
the dimension of the wetted area of the entering cylinder is the monotonic function of time.

The problem is considered in non-dimensional variables. The scales are: L = +/RVT is the length scale, T
is the time scale, V is the velocity scale of the liquid flow, pV L/T is the hydrodynamic pressure scale, where p
is the liquid density (Ionina 1998). The coupled problem has the form
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where 7, 6 are the polar coordinates, # = 0 corresponds to the lowest point of the body, w and v are the radial
and angular components of absolute displacements of the shell elements, respectively, po is the density of the
shell material, E is the elasticity modulus, v is the Poisson’s ratio, p(z,y,t) is the hydrodynamic pressure,
Po(6,%) is the external (hydrodynamic) load, which acts on the shell. Within the contact region, |z| < c(t)
and [0] < 6.(t), we obtain po(8,t) = p(z(6,t),y(8,1),t), where z(6,t) and y(6,t) are the horizontal and vertical
coordinates of the entering elastic cylinder with z(£6.(t),t) = %c(t). At the initial stage of the impact, where
fc < 1, the approximate formulae & ~ 8/7, 6.(t) ~ ~c(t) are valid, where v = L/R. Dot stands for the time
derivative. The initial conditions (3) and (4) imply that the shell is undeformed before the impact and moves
vertically. It should be noted that we do not make the non-elongation assumption at the neutral surface in
the equations of the shell dynamics (1) and (2). In order to derive equation (10), which is to determine the
dimension of the contact region (see Korobkin 1996), the undeformed shape of the shell close to the impact
point is approximated by parabolic contour.

The solution of the boundary-value problem (1)-(10) is sought, according to the method of normal modes,
in the form
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where —m < @ < , the principal coordinates a;{t) and by (t) describe the rigid motion of the entering cylinder,
and the principal coordinates ao(t) and a,(t), by(t), n > 1, the elastic deformation of the shell. It should be
noted that p, () = —¢n(t), n > 0, which follows from (5) and ¢(8/+,0,t) = 0, where ye(t) < |8] < 7 (see the
boundary condition (7)). )

It is convenient to introduce the new unknown functions g,(t) = an(t) + (pL/poh)en(t) and r, () = bp(2)
and take the dimension of the contact region ¢ as the new independent variable with time ¢ being the function
of ¢. The differential equation for the function t(c) follows from (10) after its differentiation with respect to c.
Equations (1), (2), (5)-(10) provide the nonlinear system of ordinary differential equations with respect to the
functions a;(¢), gi(c), 1 > 0, and b, (c), rn(c), n > 1. This system is solved under the initial conditions

ap=0, go=0, t=0,

ay = 0, g1 = -1, b1 = 0, = —1, (11)
a, =0, gn=0, b,=0, 7,=0 (n>1).

The initial-value problem is solved numerically by the fourth-order Runge-Kutta method with uniform step Ac.
Finite number of the normal modes, N, is taken into account with a, =0,, =0,9, =0,r, =0forn > N+1.
The limitations for the step Ac have been discussed in detail by Korobkin (1998). It is revealed that calcu-
lations with N = 15 provide the almost exact solution, which varies a little with the number of modes N increase.

2. Numerical results

Experiments with cylindrical models were carried out by Shibue et al. (1994) and by Arai & Miyauchi
(1998). The models used by Shibue et al. (1994) are made of steel with length of 600 mm and the outer
diameter of 312mm, which falls down on two-dimensional water way from the height of 1 m. The first cylinder
was the thick model with 5.1 mm thickness and the total weight of 23.8 kg. The second one was the thin
model with 1.0 mm thickness. Only the thick model is considered below. The model used by Arai & Miyauchi
(1998) is made of aluminium with length of 600 mm and the outer diameter of 306 mm. The total weight of
the model including strain gauges, cables, etc. is 5.2 kg. The thickness of the shell is 3 mm. The strains at the
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Fig. 1. Calculated (thin line) and measured (thick line) strains for the steel cylinder with 5.1 mm thick-
ness at the angles of 0, 10, 20, 30 degrees (initial impact velocity is 3.5 m/s).

bottom of the models, § = 0°, appears about 4 ms after the contact for the steel cylinder and about 7 ms for
the aluminium one.

Numerical simulations of the steel cylinder impact were carried out in the following conditions: R = 0.156m,
h=51mm,m=23.8 kg, E =206-10° Pa, v = 0.3, po = 8067 kg/m3, V = 3.5 m/s. The density of the shell
material py was evaluated under the assumption that the total mass of the model is uniformly distributed over
the cylinder. In order to evaluate the initial impact velocity V, the calculations with five ”dry” modes were
performed for different impact velocities to determine the maximum strains, om.z, at the model bottom. It was
found that the function omas (V) can be approximated as omar (V) = 14.386V2 + 45.139V, where pmqz is in
microstrains. Experiments provide omqr; = 322 microstrains, which approximately corresponds to the impact
velocity of 3.5 m/s. Figure 1 shows calculated and experimental strains at different angles measured from the
cylinder bottom. Calculated results are obtained with 15 ”dry” modes. It is seen that the strain histories are
predicted fairly well with the present approach at the initial stage, 0 < t’ < 9 ms, which is enough to evaluate
the maximum values of strains. Calculations with V' = 4.4 m/s, which is the initial impact velocity for free fall
of a body from the height of 1 m without taken into account the air presence, overpredict the strain maximum
almost twice. This means that the impact velocity is an important parameter of the process and its accurate
evaluation is significant for adequate numerical simulations of the impact. It should be noted that the present
approach makes it possible to evaluate the change of the velocity of the body rigid motion with time. We found
that the velocity drops from 3.5 m/s at the contact instant, ¢’ = 0, down to 2.5 m/s at ¢’ &~ 5 ms and to 2.0m/s
at t’ ~ 15 ms. Elastic deformations of the shell are quite small: the normal deflection w’(6,t') is less than 1
mm and the angular displacement of the shell elements is less than 0.4 mm.

It was revealed that the assumption of the neutral surface non-elongation, which essentially simplifies the
equations of the shell dynamics and is in common use in structural analysis of shell, may provides misleading
results for the amplitudes of strains and their time histories.

Numerical simulations of the aluminium cylinder impact were performed in the following conditions: R =
0.153m, h =3.0 mm, m=52kg, E=174-10° Pa, v = 0.34, po = 3040 kg/m3, V = 3.43 m/s. The density of
the shell material po and the initial impact velocity V were evaluated in the same way as for the steel cylinder.
It should be noted that the impact velocity is almost the same as for the steel cylinder, which implies that
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Fig. 2. Calculated (thin line) and mea- Fig. 3. Calculated and measured strains for the alu-
sured (thick line) strains for the aluminium minium cylinder with 3.0 mm thickness at the bottom
cylinder with 3.0 mm thickness at the bot- of the body (V = 3.43 m/s): ==, full nonlinear hydro-
tom of the model (initial impact velocity is dynamic model and three-mode approximation for the
3.43 m/s). Calculations are performed with shell dynamics (Arai & Miyauchi 1998);—, present
15 ”dry” modes. calculations with five ”dry” modes; o o o, measured

strains (Arai & Miyauchil998).

its value depends mainly on the body geometry and its weight. The density po = 3040 kg/m3 is greater than
the density of aluminium, 2700 kg/m3, which is due to the additional weight of the model, which comes from
cables and connectors (see Arai & Miyauchi 1998). This additional weight is about 11% of the total mass for
the aluminium cylinder and just 3% for the steel cylinder. The present approach deals with isotropic shells and
effects associated with additional weights are not taken into account. It is well known that additional masses
attached to a shell can essentially reduce the lowest frequency of the shell free vibration. This effect can be
observed in Figure 2, where the calculated results are compared with the experimental ones by Arai & Miyauchi
(1998). The calculations were performed with 15 ”dry” modes. It is seen that the calculated maximum strain at
the bottom of the cylinder appears about 2 ms before the measured strain does. We expect that the agreement
between the calculated and measured strain-time histories would be better with more complicated shell model,
where the presence of additional weights is account for.

It should be noted that the numerical calculations by Arai & Miyauchi (1998), where fully nonlinear hy-
drodynamic model and the three-mode approximation for the shell dynamics were used, demonstrate similar
defects (see Figure 3).

We conclude that the present approach based on the Wagner theory and the method of normal modes can
be recommended to obtain both the estimations of maximum strains and strain histories for not very flexible

and isotropic shells.
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