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Introduction

In recent papers by JIANG (1998) and JIANG and SHARMA (1998) it has been shown that shallow-
water wave equations of BOUSSINESQ type can be successfully used to simulate ship waves in shallow
water. For a slender ship the well-established technique of matched asymptotic expansions can be
applied to approximate the near-ship flow. For a flat ship a pressure distribution proportional to
the local draft can be used to approximate the ship influence on the ambient water. The resulting
computer programs were recently applied to predict the wave generation of an inland passenger-ferry
moving in a shallow-water channel. The body plan is reproduced in Fig. 1. The under-water ship
form is charaterized by a large beam-draft-ratio (% = 7.37) and a small value of the slenderness

parameter defined by 6 = 3%'; = 0.072 with the main sectional area S, and the length L on the
water line. Fig. 2 compares the calculated wave records from the computer programs based on the
above two appoximation methods with that measured. For the design speed of Fyp = 0.873 the main
observations are: (i) The agreement is good near the ship (responsible for the good agreement of the
wave resistance) and ahead of the ship (good prediction of the solitary waves). (ii) The remarkable
agreement for the wave records near the channel wall indicates a realistic dispersion relation of the
BOUSSINESQ equations and the correct implementation of the boundary condition on the wall. But
the relatively large discrepancy behind the ship near the tank center may be caused by the deeply
submerged transom stern which has not been explicitly treated in the present approximations.

Moreover, it was shown that calculations near the bifurcation points, defined by the transition from
steady solution to the unsteady one in the subcritical speed range or by the transition vice versa in
the supercritical speed range, depended on the time step-size and were sensitive to numerical filtering.
Therefore, the present study focuses on the improvement of the numerical methods implemented in
our computer codes. To efficiently investigate these numerical problems the one-dimensional shallow-
water equations of BOUSSINESQ type are used here without loss of generality. The resulting computer
program will be applied to simulate some one-dimensional wave problems, such as waves generated by
a wave maker in a shallow-water channel or a pressure distribution moving over waves.
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Fig. 1 Body plan of an inland passenger-ferry
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Fig. 2 Comparison of wave profiles from calculations and model measurements for an inland passenger-
ferry at speed Fyp, = 0.873 in shallow water channel of depth 5 m ( measured; — — — calculated
by using slender-body theory for the near field; ------ calculated by using pressure appximation)
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Modified BoussINESQ Equations

The basic assumptions of BOUSSINESQ equations are that the waves are weakly nonlinear and long in
comparison to water depth. The former implies that wave amplitude (4 is small compared with water
depth ho. The latter means that water depth is small compared with wave length A. By matching
%‘3 = (31')7"1)2 the flow is governed by the classical BOUSSINESQ equations

hy — Vhg + hug + uhgy =0, (1)
h2
up — Vg + uty + ghy — -3—°(um — Vuges) =0, (2)
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in a coordinate system Ozz moving with a constant speed V. 'I'he z-axis is on the quiet free surface
and z-axis is positive upward. The horizontal velocity component averaged over the local water depth
h = ho +((z,t) is denoted by u and the wave elevation by (.

To improve the dispersion relation for short waves the above BOUSSINESQ equations can be modified
by adding higher order linear terms in equation (2). The modified BOUSSINESQ equations read now:

he = Vhy + hug + uhy =0, ®3)

uy — Vg + uug + ghy — %‘2’-(1 — 3CBQ)(¥zst — Vigzs) + gh2CBQAzze = 0, (4)
with the coefficient Cgq needed to be specified. Its suitable value can be found by comparing the
dispersion relation of the modified BOUSSINESQ equations

V2 1-Cgq(kho)® _

gho 1+ (3 = Cra)(kho)?
with that from the linear wave theory

1- 2(kho)? + 3(5 ~ Caa)(kha) = -+, (%)

V2?2  tanhkh, 1 9 2 4
;,;;——,;,;——l’g(kho) + p(kho)* = -+, (6)

where k = 2% is the wave number. An approximation of order Of(kho)*) leads to the suitable value
Cpq = -—%. An optimum value of Cpq = —0.057165 can be found in the approximation range of
kho from 0 to 7. To demonstrate the influence of Cpq on the dispersion relation, Fig. 3 shows the
dispersion relations of the linearized classical BOUSSINESQ equations with three different values of Cpq
and compares them with that from the linear wave theory for finite-depth water. It can be seen that
the modified Boussinesq equations are valid for a wave length down to twice the water depth without
noticeable errors.
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Fig. 3 Comparison of the dispersion relations of linear ship waves

Numerical Solution

The Boussinesq equations (3) and (4) are now discretized in time and space by using the Crank-
Nicholson scheme. To show this procedure the governing equations are represented by the following
vector equation

Qt + MzQz + Mt:cthzz + Mmzzszz = 0, (7)
with the state vector and matrices
h -V+u h |-V &
Q=(u)’ Mz_[ p —V+u] and A—-[ g —V]

0 0 0 0 ]
== d Mz T = °
Mies { 0 —%(1-3Cgq) ] = - [ Cpqgh? %(1-3CaQ)V
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Now by defining the ditference operators

Q=@ QY 4Q= (@ -Qn),

1 1
6zQ = -2—A—;(Qi+1 — Qi—l), 61,-3Q = m‘;(QH—l - 2Q1 + Qi—1)7

the contintibus BOUSSINESQ equations turn into a finite difference form

IQn+1 IQ’-‘
+4Aa: +2 (Q::-*-ll :l-j-ll 4Ax +2 (Qz+1 - Q:-—-l)
+3lr(Misz — 35AA) _ tar(Mue - 57AA) ®
QE -2+ + Qi) Q% - 2Q"+Q,_1
+ 1AL (Meee — AEMIVTAA — A2 M) ~ AL (M, ~ A2 MM AL - 22N
(Qyy - 2Q?f11 + 2Q?-+11 -Qy) (QF2 —2Q%, + 2Qi—1 - Q)

with the matrix
1 1
Mz'? = M(Q]?).

By explicitly evaluating the state vector Q"+'zl' using its value at time-step n

Q"+ = Q" — Z(ZHIML5 Q" + (Mace — Mz A)5:8,:Q7)
+21, (é—t)zAAész" - -l-(ﬁ)“AAAax 6:2Q", (9)

the finite-difference form in (8) represents a linear algebraic equation system.

Unified Conditions on the Truncating Boundary

For the given initial conditions (k = ko and u = 0) the solution of the above linear algebraic equation
system is defined by the boundary conditions. The general conditions on the truncating boundaries
can be unified as follows:

(1- r)s\/_h +u=(1- r)s\/—hm + Ui, (10)

he — s\/gut +(=V +u—sVgh)(hs - s\/-guz) =0, (1)

with s = 1 for down-stream truncation , s = —1 for up-stream truncation and s = 0 for a wave
maker; r = 0 for a no-reflection boundary, r = 1 for a total-reflection boundary. hj,,uin stand for
incident values. The time and space discretizations of equations (10) and (11) follow again from the
Crank-Nicholson scheme but now using only the one-sided space-difference towards the calculation
domain. To suppress numerical oscillations the local and global filtering techniques are implemented,
see e.g. SCHROTER (1995).
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