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The plane unsteady problem of elastic plate impact onto shallow wave crest is considered. The liquid is
assumed ideal and incompressible, and its motion plane and potential. The elastic plate is the bottom of a
structure, which penetrates the liquid at a constant velocity V. The plate deflection is governed by the Euler
beam equation and the beam edges are assumed simply supported. The problem is coupled because the liquid
flow, the beam deflection and the geometry of the contact region between the entering body and the liquid must
be determined at the same time. Details of the process, and the geometry of the contact region in particular, are
essentially dependent on the initial free-surface shape, which is usually not well defined in practical problems.
Even within simplified approaches, sophisticated numerical algorithms are required to describe the parameters
of the contact region (1-6]. On the other hand, experiments [5] and the theory developed by Faltinsen [6] show
that some important characteristics of the impact including the maximum of bending stresses in the plate are
weakly dependent on the impact conditions. Moreover, the bending stresses approach their maximum values
after the plate is totally wetted (penetration stage). This indicates that global characteristics of the process
such as the energy of the plate-liquid system can be of help to obtain estimations of the maximum of bending
stresses.

The aim of the present study is to derive reasonable estimations of the bending stress maximum with the
help of the energy conservation law and to compare these estmations with the experimental data [5) and the
results obtained by direct numerical simulation of the wave impact within the Wagner approach.

Formulation of the problem

Initially an elastic beam of length 2L touches the curved free surface of the liquid, shape of which is given by
the equation y = f(z), where | (df/dz)(z) |« 1, ~00 < z < +00. The liquid is at rest and occupies the region
y < f(z). The Cartesian coordinate system zOy is fixed in space and its origin coincides with the left-hand
edge of the beam at the initial instant of time, ¢ = 0. Then the beam starts to penetrate the liquid vertically
with the velocities of its edges being V. The beam deflection w(z,t), 0 < z < 2L, is governed by the Euler
beam equation and the liquid flow is described by the velocity potential ¢(z, y,t), which is connected with the
hydrodynamic pressure p(z,y,t) by the Cauchy-Lagrange integral. The velocity potential satisfies the Laplace
equation in the flow domain Q(t), which varies with time. External mass forces and surface tension are not
taken into account. Both dimension and position of the contact region D(t) are unknown in advance, which is
the main feature of the impact problems. The boundary condition in the contact region D(t) is taken in the
form

8p/0y = -V + w(z,1). (1)

The kinematic and the dynamic (p = 0) conditions are hold on the liquid free surface.
Energy conservation law

Kinetic energy of the non-linear liquid flow 77 (t) is given by
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where p is the liquid density. The Euler equation, which describes dynamics of the beam with simply supported

edges, provides ' ,

¢
Ta(t) + Pe(t) = / ( / pw,ds) dr, (3)
o D(r)
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Ts(t) = 57"3/«: wi(z,t)dz, Pg(t) = §EJ-/; wZ (z,t)dz,

where T5(t) and Pp(t) are the kinetic energy and the potential energy of the beam, respectively, mp is the bt?am
mass per unit length, E is the elasticity modulus and J is the inertia momentum of the beam cross-section.
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Figure 1: Impact of an elastic beam on a curved liquid free surface. Initially, liquid is at rest, and the elastic
plate just touches the free surface. The flow patterns after the impact are shown for different impact conditions
(with and without a cavity formation).

Substituting (1) into equation (2) and combining (2) and (3), we obtain

¢
Ta(t) + Pa(t) + To(t) = V / F(r)ar, @
0
where F(t) is the total hydrodynamic force on the entering beam.
Wagner approach

The impact is the event of a short duration, which makes it possible to simplify the problem. Assuming that
the maximum of bending stresses, which are of main interest in the present study, appears at a small penetration
depth, when the deformations of the liquid region are still negligible compared to the beam length, we can, as
a first approximation, put the boundary conditions on the line y = 0 and linearize them and the equations of
motion near the initial rest state (Wagner approach). Nevertheless, even after all possible simplifications the
problem is still complicated and difficult to treat. Main difficulties to describe the hydroelastic interaction are
associated with the impact stage, during which the plate is wetted only partially. This is the stage, during which
spray jets at the periphery of the contact region are observed. These jets are very thin and their contributions
to both the flow in the main region and the contact region geometry are negligible but their kinetic energy is
comparable with the energy of the main flow. At this stage the geometry of the contact region can be very
complicated owing to both the plate deflection and the initial free-surface shape (figure 1). It is possible that
a cavity on the plate surface is formed, which leads to high hydrodynamic loads at the moment of the cavity
collapse. At the impact stage the problem is essentially nonlinear and its solution is very sensitive to the impact
conditions. At the end of the impact stage, t = ¢., the beam is totally wetted and the spray jets continue to
move inertially and separately from the main flow taking a part of the energy Tj; with them.

At the penetration stage the problem within the Wagner approach is linear and similar to the problem
of floating plate vibration on the liquid free surface. The initial conditions for this problem come from the
non-linear solution at the end of the impact stage. If the plate deflection and the velocities of its elements are
known at t = t,, then the characteristics of the process at the penetration stage, where the bending stresses
take their maximum values, can be easily found. This observation indicates that the solution at the end of the
impact stage is only required to evaluate the maximum of bending stresses in the plate.

During the penetration stage, t > t., the total kinetic energy of the liquid T (t) can be presented as

2L
T(t) = Tjee + Tor+ TLe(t) ~ pV/; V(2L — z)w,(z,t)dz, _ - (%)

where T g is the energy of the flow caused by the impact of the equivalent floating rigid plate at the velocity V'
(the boundary conditions for the corresponding velocity potential in the lower half-plane are: ¢y, = —V, where
y=0,0<z< 2L, and ¢ = 0, where y = 0, 2 < 0 and z > 2L), TLg(t) is the energy of the flow due to
vibration of the floating elastic plate (py = w;(2,t), where y = 0,0 < 2 < 2L,and ¢ =0, where y =0,z < 0
and z > 2L). The external work is given by

t 2L
17 / F(r)dr = 12’-;,L2V2 -V / VZCL - z)w(z,t)dz (6)
] 0

within the Wagner approach. We obtain Ty g = (7/4)pV2L2.
Substitution of (5) and (6) into (4) provides

To(t) + Pa(t) + Tup(t) = TpVL? ~Tjer (¢ >1.) (7
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equal to the energy_of the flow caused by the floating plate impact and does not depend on initial shape of the
free surface. Equation (7) also indicates that flexibility of entering body reduces the energy taken away with
the spray jets.

Be.low we tak.e the quaptity %pV"’L2 as the energy scale and denote the terms on the left-hand side of the
non-d1mfen510nallzed equations (7) by Uks, Ups and Uy, respectively, and their sum by U.. The energy equation
(7) provides

U » S 7|'/ 2. (8)

This ineqpa_lity is used bel.ow instead of equation (7) to estimate the maximum of the bending stresses in the
plate. This is because the jet energy T}, is difficult to evaluate. In order to find this energy, we need to recover
- all details of the flow during the impact stage.

Numerical analysis

Direct numerical simulations of the impact stage were performed for different initial shapes of the free surface
and different positions of the impact point (see figure 1) by the method of normal modes [1-4]). It was revealed
that both the deflections and the velocities of the beam elements are essentially dependent on the initial free-
surface shape during the impact stage. On the other hand, the ’elastic’ energy U. (t.) at the end of the impact
stage is weakly dependent on the initial conditions.

At the penetration stage the total energy U.(t) remains constant, which follows from the fact that impact
problem at the this stage is linear within the approximation employed. The parts of the ’elastic’ energy Up(t),
Ups(t) and Usi(t) are functions of time and are depicted in figure 2 for the plate used in experiments [5] and
the wave impact at the beam edge. The results of direct numerical simulations of the bending stresses in the
plate, o(z,t) = —Ez,ws,(z,t), where 2, is the distance from the neutral axis in the beam cross-sectional area
to the point where ¢ is evaluated (see [5]), are shown in figure 3, where the solid line is for the maximum of the
non-dimensional stresses in the plate and the broken line is for the bending stresses at the plate centre. It is
clear from this figure that the stresses at the plate centre can be used to estimate the absolute maximum value
of stresses in the plate.

Figures 2 and 3 demonstrate that the main contribution to the ’elastic’ energy at the beginning of the
penetration stage comes from the kinetic energy of the liquid flow, Uy (2.), but at the time instant t,,,,, when
the bending stresses reach their maximum value, from the potential energy of the deformed plate, Upb(tmaz),
with the kinetic energies Uks(¢maz) and Usi(tmaz) being negligibly small.

Within the normal mode approach the potential energy Ups(t), ¢ > t., is the sum of contributions of each
’dry’ mode. The relative contributions of the mode potential energies to the ’elastic’ energy U. (t) are depicted
in figure 4, where Pj is the potential energy due to the first mode and P, is the contribution of the modes
from second to tenth to the potential energy of the deformed plate. This figure shows that the one-mode
approximation gives a reasonable estimation for the potential energy. On the other hand, this approximation
underpredicts the maximum stresses as it is clear from figure 5, where the dotted curve is for the maximum
stresses obtained within the one-mode approximation and the thick curve for stresses at the plate centre obtained
with ten modes taken into account. Within the one-mode approximation the amplitude of the first mode and
its first derivative in time are matched continuously with their values obtained numerically at the end of the
impact stage, t., with ten modes taken into account. 4

The absolute maximum of the bending stresses ¢4, and the time ¢4, can be found much easier if we
observe that P (tmaz) & U, at tmae (see figures 2 - 4). This approximate equality provides '

/EL 2L2 /m + S11pL
a’ma,wU}Vza —§—, tmN-ﬂ,— LE'.-‘}LIP—, 9)

where S11 = (n/2)[JE(r/2) + JZ(n/2)] (see [1]). Equation (9) shows that ¢me, does not depend on the impact
velocity, is proportional to L%/2 and inverse proportional to h%/2, where h is the plate thickness. The maximum of
bending stresses maqz is proportional to (L/h)1/? and the impact velocity V ( see discussion of the experimental
results in [5]). In the experiment conditions for the steel plate formulae (9) provide omar = 1867us and
tmaz = 0.0075s, which reasonably correspond to the measured values o pmqr = 1600ps and ¢,z = 0,005s. It
should be noted that the connection between the elastic plate and the structure was more complicated in the
experiment that it is employed in the simplified theoretical analysis here. Taking into account more realistic
edge conditions reduces the differencies between the estimated and the measured values.

The non-dimensional ’elastic’ energy U, in (9) has to be evaluated from the numerical solution of the original
problem at the impact stage with all peculiarities of this stage taken into account. This fact reduces the practical
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Let us denote the total length of the beam by Lp, then (8) and (9) lead to

Ia'maz' I J < _TE
” 3 )

where \/n/4 &2 0.88. Experimental results for the same ratio and different impact velocities, plates and impact
conditions {5] provide its upperbound as 0.7 . The theoretical estimation obtained overpredicts the experimental
estimation but is simple and can be recommended for structural analysis of plates subject to wave impact loads.
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Figure 3: Non-dimensional stresses in the plate during
the penetration stage: solid line is for maximum stress,
broken line is for the bending stresses at the plate centre.

Figure 2: Components of the 'elastic’ energy U.(t) as
functions of time during the penetration stage
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Figure 4. Relative contributions to the ’elastic’ energy
U.(t) of the total potential energy, Ups/U.; the potential
energy due to the first mode, P; /U.; the potential energy
due to the modes from second to tenth, P> /U..

Figure 5. Non-dimensional stresses in the plate during
the penetration stage: solid line is for bending stresses
at the centre, broken line is the theoretical estimation of
the bending stresses, dotted line is for bending stresses

given by one-mode approximation.
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