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Introduction

At the previous workshop MclIver (1998) proved that the two-dimensional boundary value
problem for linear water waves in the presence of an arbitrary sea-bed topography has a
unique solution if Khyax < 1, where hpay is the maximum depth of the layer, K = w? /g,
w is the angular frequency of oscillation and g is the acceleration due to gravity. The proof
uses the fact that when there are no bodies in the fluid, a line on which the potential is zero
connects the free surface to infinity and, if Ky < 1 at every point on this line, uniqueness
may be established. '

Lack of uniqueness is equivalent to the existence of a ‘trapped mode’ (a local oscillation
which has finite energy). Mclver (1996) showed that trapped modes exist for pairs of
surface-piercing’ bodies formed from parts of the streamlines associated with a pair of
suitably place sources in deep water. Figures 1 and 2 illustrate the positions of bodies
which support symmetric and antisymmetric trapped modes respectively. Although the
uniqueness result of McIver (1998) is not applicable to bodies in deep water, it is instructive
to note that in each case there are zero potential lines which asymptote to the lines Ky = 1
as |z] — oo, and which satisfy Ky < 1 everywhere. However this does not lead to a
contradiction, because for the uniqueness proof to hold, vertical lines would need to be
extended from all points on the free surface to the right of the bodies, to the zero potential
line. This is impossible because the bodies are bulbous. Figures 1 and 2 also illustrate the
position of the zero streamlines and in both cases they extend from infinity to a point on
the free surface which is between the bodies. For symmetric motion the zero streamline
is the line £ = 0, whereas for antisymmetric motion, the lines asymptote to straight lines
with gradient +1 ' A
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Figure 1 - Pair of surface-piercing bodies which support symmetric trapped modes;
- - - - zero potential line, — — — zero streamline

In this work a proof will be given that no symmetric trapped modes can be supported
by a symmetric configuration of bodies which satisfies n, < 0 at every point on the
boundary of the bodies in the region £ > 0, where n, is the component of the inward
normal to the structure in the z direction. Furthermore, it will be shown that the problem
of whether antisymmetric trapped modes exist for this configuration reduces to the problem
of whether trapped modes exist above a beach. In each case the position of the zero
streamlines will be exploited.
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Flgure 2 - Pair of surface—plercmg bodies Whlch support antlsymmetnc trapped mod&s
---- zero potent1al hne, —— —— — ZE€TO stream]me

Formulation

A symmetric system of bodies such as that illustrated in figure 3 is studied. The boundaries
of the bodies are assumed_.to be piecewise smooth and to satisfy n, < 0 at each point in
the region z > 0, where n, is the component of the inward normal in the x direction.

S

. Figure 3 - Configuration of symmetric structures i‘

‘The velocity potential which describes the two-dimensional, small oscillations of an inviscid (
and incompressible fluid at angular frequency w is glven by Re[qS(a:,y) e‘“"‘] where ¢ \
satisfies

V2¢ =0, in the fluid 1)
and 5
K¢+-;z=00ny 0. (2) r,

. .Axes are chosen so that the orlgm is in the mean free surface (or inside the surfa,ce-plercmg ‘
“body) and the y-axis points vertically downwards. In addition, no flow through any rigid

surface means that 5
62 0 on the bodies. (3)

Trapped modes are defined to be non-zero solutions of the problem defined in (1)-(3) which
have finite energy, ie which satisfy '

'/|V¢|2dv+k/ |$]% dx < oo, (4)
D F
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where D is the fluid domain and F is the mean ﬁ'ee surface. Uniqueness is established 1f
the only solution to the homogeneous problem defined in (1)-(4) is the zero solution.

In the next section a proof that symmetric trapped modes do not exist for the config-
uration in figure 3 will be given.

Uniqueness of the symmetric motion

As the configuration of bodies is symmetric, the potential may conveniently be split into
symmetric and antisymmetric parts, and the symmetric part of the potential satisfies
0¢/0z = 0 on that part of the line z = 0, which lies within the fluid. (In this section ¢
will be used to denote the symmetric potential.) Thus the line segments, together with
the connecting pieces of the right-hand parts of the bodies, form a streamline. By suitable
choice of the constant in the stream function %, this line may be taken to be a zero
streamline, and it may be thought of as a rigid boundary to the fluid on its right.

Without loss of generality ¢ is.assumed to be real. By definition, the function ¢ + iy
is an ana.lytlc function of x + iy and so ¢ and 4 satisfy the Cauchy-Riemann equations

99 Oy 08¢ (5)
8z o8y’ by oz

Furthermore
(¢ +ip)? = ¢° —° + 2igyy (6)

| is analytic and so ¢? — ¢? ahd 2¢% are harmonic and satisfy
o
2 F )= @), o9 =~ (28w, @

Green’s theorem is a.pphed to the ha.rmomc flmctmns ¢2 1? and z in the fluid region to
the right of the zero streamlme and yields

[ @ = v9ma-oam (@ =) s =0, ®)
aD n

where 8D consists of the zero streamline, the mean free surface in z > a and a closing
quarter circle at infinity. The quantity n, is the component of the outward normal to the
fluid region in the z direction and 8/8n denotes the outward norma.l derivative. It may
be shown that ¢ and ¢ decay at least as fast as (2 + )~ 2 a5 22 4+ 92 — 00, ¥y 2 0
and so poss1ble non-zero contributions to the integral in (8) may arise only from the zero
streamlme and the mean free surface. On the zero streamline 1 = 0 and 0¢/8n = 0 and
so

5 (@ =9 =25k 20l =0 ©
on thls line, and : :
P N AP OT ST Ny 2
[ (@ ¥me—ag @ —yas= [ Fnaas (10
On the mean free surface ng = 0, and from (7)
2@ -9 =2 @ - #) = 5 (8¥). my=0z>a (11)
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Thus

2 .12 _ 2_ 2 2\ A — _CZ _ )
/;=O,m>a(¢ d) ) e xan (¢ "/’ )dx - L=O,x>a 23363: (¢¢) b= v/y=0,:z:>a 2¢¢ dx
(12)

where integration by parts and the fact that 1 = 0 on the zero streamline and ¥ — 0 as
Z — 00, ¥ = 0 have been used. From the free surface boundary condition (2) and the
Cauchy-Riemann equations (5)

2 9 2 0 10
260 = gl = V5 = T o). (19

Substitution of (13) in (12) and integration shows that the contribution to the integral in
(8) from the mean free surface is zero. Thus from (8) and (10)

| ¢#*ngdS=0. (14)

. tﬁ_=0
By assumption n,; < 0 everywhere on the line 1 = 0 and so (14) may only be satisfied
if ¢ is identically equal to zero on this line. This means that both ¢ and 8¢/8n are zero
on this line and 'so an application of Green’s theorem to ¢ and the free surface Green’s
function yields that ¢ equals zero everywhere in the fluid region.

The antisymmetric motion

The anmsymmet;rlc part of the potential is dominated by the lowest antisymmetric wave-
free potential as z% + y? — co. The cor r%pondmg stream function satlsﬁes

1/)._=.p [_cos38 _ _Ié(_co;%] +0 (_}_) (15)

as r — o0, for some constant p, where £ = rsinf and y = rcos6. A similar argument to
that used by Mclver (1998) may be used to show that zero streamlines asymptote to lines
parallel to the lines = i'n'/4 (ie lines with gradient +1), as r — oo, and that these lines
must terminate on the mean free surface in a symmetric fashion. Thus a region contained
- between the free surface and a beach is formed and, if uniqueness may be established for
that region, then by analytic continuation, the antisymmetric potential will be unique in
the whole fluid domain. '

Conclusion

In this work it has been shown that no symmetric trapped modes exist for certain symmet-
ric configurations of bodies and that the question of whether antisymmetric trapped modes
exist for these configurations may be reduced to the question of whether trapped modes
_exist above a beach of arbitrary shape. It is clear that the positions of the zero potential
. line and the zero streamlines are critical in determining whether trapped modes may exist,
and future work will endeavour to exploit the nature of these lines and to determme more
general conditions under which trapped modes exist.
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