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1 Introduction :

A design for a floating airport in Japan involves a platform supported by an array of thousands of
cylindrical legs. Kagemoto & Yue' proposed an approximate numerical method for the calculation
of wave interaction with such an array in which the hydrodynamic characteristics of cylinders in
the inner part of the array differed from one cylinder to another only by phase effects. In other
words, the cylinders in the inner part are treated as if they are part of a periodic array extending
to infinity in both horizontal directions. Implicit in the analysis is the assumption that waves do
not decay as they propagate through an infinite array. However, this need not be the case as has
been observed in the closely related problem of sound propagation through tube bundles?

Here, the propagation of waves through a doubly-periodic, infinite array of identical vertical
cylinders extending throughout the water depth is examined. This problem is closely related to
that of a particle moving in a periodic potential which has been studied extensively in solid state
physics3. At most wave frequencies of interest propagation is indeed possible without change in
amplitude although, in general, there will be a change in phase from one cylinder to another.
However, for some frequency ranges, in so-called band gaps, wave propagation without amplitude
change is not possible and the motion amplitude decays with distance.

2 Formulation
As the arrangement of cylinders to be consid-
ered is doubly-periodic, it is possible to confine
attention to a cell in a horizontal plane that
contains only a single cylinder. For a rectangu-
lar array this primitive cell is also rectangular
and is illustrated in figure 1. The horizontal
coordinates are illustrated and the z coordinate f— D —»f
is directed vertically upwards with origin in the v
plane of the mean free surface.

For time-harmonic motions of angular fre-
quency w, the velocity potential is written as
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Figure 1: Definition sketch for a rectangular array.
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where
(V2+ k%) =0 (2)

throughout the fluid region, « is the real positive root of the dispersion relation w? = gktanhkh
and h is the water depth. Solutions are sought in the form suggested by Bloch’s theorem?®, that is

¢(r) = 97 y(r), (3)

where r is the position vector of a point in the horizontal plane and 1 has the same periodicity as
the lattice. For real vectors q such solutions correspond to the propagation of unattenuated waves
through the array, and q measures the change in phase as the array is traversed. If q has a non-zero
imaginary part then there is also a decay in amplitude as a wave propagates through the array.




Let q = q1i + goj, where i and j are unit vectors in the z and y directions respectively. For the
present geometry, it may be shown that (3) is equivalent to the four independent conditions

#(L/2,y) = euL ¢(-L/2,y),
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The mathematical problem has been reduced to the solution of the field equation (2) within the fluid
region of the cell {~L/2 <z < L/2, —W/2 <y < W/2} subject to the boundary conditions (4-5)
and the condition of no flow through the cylinder wall, namely

gq;s:O on r=D/2 (6)
where (r,6) are the standard plane polar coordinates illustrated in figure 1.

Two basic approaches to the problem are used. One is to specify the wave vector g and then
solve an eigenvalue problem for the wavenumber k. Alternatively, x and one component of q is
specified and the eigenvalue problem is then to determine the second component of q. Detailed
results have been obtained using both of these approaches and, in general, the relationship between
& and q is very complex and much investigation remains to be done to clarify matters. However, to
illustrate in a simple way some of the main features of the problem, an approximate method which
applies the second of these approaches to a simplified problem is described in the following section.

3 An approximate solution
The conditions (5) are here replaced by the special case

| g%=0 on y==xW/2, (7
which is equivalent to having solid walls at y = +W/2. This condition yields a subset of the solutions
possible for g = 0. The conditions (4) are retained in their general form. The walls can be removed
if an appropriate image system is introduced in the y direction, thus the geometry of the ‘channel
problem’ is equivalent to that in the problem originally posed. The geometry is symmetric about

'y = 0 and it will be assumed that the wavenumber is below the cut off for non-planar modes in a
channel of width W so that kW < 2m. The main aim is to calculate the so-called Bloch transmission

coeflicient
Tg = el (8

which measures the phase change and/or the attenuation of a wave as it propagates through one
cell of the array in the direction of z increasing; see equations (4).

If the cell length L satisfies kL >> 1, then to a first approximation only plane waves propagating
along the channel exist in the vicinity of £ = L/2. Thus, in the neighbourhood of z = —L/2

o=A e +B; e inz (9)
and in the neighbourhood of z = L/2

¢ = Ay e 1 Bye "%, (10)
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for some complex constants A;, Az, By and B;. The wave with amplitude A2 propagates away from
the cylinder and is due to the transmission of A; and the reflection of B,. Similarly, the wave with
amplitude B arises from the transmission of B, and the reflection of A;. Thus

A2=TA1+ RB; and B; =TB;+ RA;, (11)

where R and T = |T|e% are the reflection and transmission coefficients for a single cylinder in the
channel. It may be shown that the system consisting of (11) together with the equations resulting
from the application of (4), has a non-trivial solution provided

cos(é + kL)

7] = f(xL), (12)

cosqiL =
say. When |f(xL)] < 1, equation (12) has only real solutions for ¢;L and waves will propagate
through the array with their amplitude unchanged. However, whenever |f(xL)| > 1 solutions are of
the form gL = nw £iQ), for real @ > 0 and some integer n, and the Bloch transmission coefficient
Ts = (—1)"eT9. Waves that propagate in the direction of x increasing correspond to the upper
sign, while the lower sign corresponds to waves propagating in the direction of z decreasing. In
both case the wave attenuates as it propagates.
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Figure 2: Approximate Bloch transmission coefficient |T| as a function of wavenumber xL; W/L =1,
D/L =0.2.

A typical solution for T§ is illustrated in figure 2. For simplicity, the approximations given by
Martin & Dalrymple? are used for the reflection and transmission coefficients for a single cylinder in
a channel. The parameter values have been chosen to clearly show the behaviour rather than to lie
within the range of validity of the solution. For 0 < kL < 2.96 and 3.24 < kL < 5.98, |T| = 1 and
the waves propagate through the array with amplitude unchanged; in the terminology of solid-state
physics these are known as passing bands. For 2.96 < kL < 3.24 and 5.98 < kL < 2, [Tg| <1 s0
that the waves decay in amplitude as they propagate; these are known as stopping bands.

The solution for a doubly-infinite array is related to the reflection and transmission properties
of an array that has finite length in one direction. Consider N infinitely long rows of cylinders
situated at £ = Ly, m = 1,2,...,N, with Lyp41 — L, = L form = 1,2,...,N — 1. Each row
may be thought of as a single cylinder with axis on y = 0 between channel walls at y = +Wy/2. A
wide-spacing formalism® shows that Ry and Tﬂj 1the reflection and transmission coefficients for the
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Figure 3: Transmission coefficient |To| for twenty rows of cylinders (dashed line) compared with Bloch
transmission coefficient [T5]%° (solid line) as a function of wavenumber xL; W/L =1, D/L = 0.2.

complete array of N rows, satisfy

Tn el(kLN+kL) _ gV eixl1  where S < (T - R2 /T) et  ReisL /T (13
0 B Ry e~isl B ~Re™kL /T e-isl T )

and this system is easily solved to determine Ry and Ty.

Results for a grating with twenty rows are displayed in figure 3. Comparison is made with ||
which is the transmission.coefficient for propagation through a distance 20L in the doubly infinite
array. The oscillatory behaviour in |Tg| is due.to end effects for the finite number of rows. As
the number of rows N in the finite array increases, |Tiv| approaches the value |Tg|" obtained from
the doubly infinite array. Hence the Bloch transmission coefficient Tg may be used to predict the
properties of a large, but finite, number of rows of cylinders.

The positions of the troughs in transmission (and hence peaks in reflection) can be explained
through the phenomenon of Bragg scattering that is well-known in x-ray diffraction by a crystal.
For strong overall reflection to occur the waves reflected from different rows of a grating must
interfere constructively and, for the normal incidence investigated here, this occurs when kL = n,
for integer n, which is clearly consistent with the results of figure 3.
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