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1. Introduction

Three-dimensional solution of ship motions with forward speed has been obtained by many investi-
gators for a single-layer fluid of infinite depth. In this abstract, the problem is extended to a two-layer
fluid of finite depth where the body is traveling in the upper layer and does not intersect the fluid
interface. A two-layer fluid is often used to model density stratification due to temperature and salin-
ity variations (small density difference) as well as a muddy bottom beneath a clean water layer (large
density difference). In the latter case, the viscosity of the mud has been shown to have a negligible
effect on the hydrodynamic coefficients of the body [1]. Previous solutions of the radiation-diffraction
problem in a two-layer fluid are either two-dimensional [1-3] or without forward speed [4]. They show
that density stratification has a significant influence on the hydrodynamic properties of the body over
certain ranges of frequencies and velocities.

2., Mathematical Formulation

Let’s define a rectangular coordinate system moving with the body at the mean speed U along the
positive z-axis. The (z,y) plane of this system coincides with the undisturbed interface between the
two fluid layers. The z-axis is positive upward. Let py, by, () and p2, ha, 82 denote the densities,
depths, and total velocity potentials of the upper and lower fluid layers, respectively. Then, as in the
case of a single-layer fluid, we can express ®(™) as the sum of a steady and an unsteady component
as follows:

7
Q(m)(:c,y, z,t) = U<i>(m)(a:,'y, 2)+ R {Z chsg’")(m, y,z)ei”t} , m=1,2. (1)

7=0

The potentials $(™) are determined by the following boundary-value problem:

V23 = g, 0<z<hy,m=1, ~hy<z2<0, m=2, (2)

3} - 208l + U281 + g8 = 0, z=hy, (3)

3 = (), z=0, (4)

(2l - 2080 + Ual) + g2) = 37 - 203 + 178 + 30, z=0, (5
32 = o, z = —hy, (6)

3 =V.n, x € 8, (7)

and an appropriate radiation condition. In the above equations, g is the gravitational acceleration,
7 = p1/p2 is the density ratio, V is the local velocity of the body surface S, and n is the normal unit
vector pointing into the body.

The potential (™) is generated by the steady forward motion of the body. Its solution is addressed
in [4-5]. In this paper, the body is assumed to be slender so that the steady disturbance is small and can
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be neglected. This simplification, though not essential, allows the unsteady potential to be obtained
without solving the steady problem.

3. Incident Wave Potentials

In a two-layer fluid, time-harmonic waves can propagate at two different modes with wave-numbers
k1 and kg, respectively. In the surface-wave mode, wavenumber ky, the maximum displacement occurs
at the free surface, and the displacements at the free surface and fluid interface are in phase. In the
internal-wave mode, wavenumber k,, the maximum displacement occurs at the interface, and the free
surface and interface displacements are 180° out of phase. The dispersion relation for each mode is
given by:

—1)nt1 2.
2 %,1 [(tl t 1) + (=1)" /(i + 1) — detata (T + 7t1t2)] ’ w12 (8

" 1+ vtaty

where t; = tanhk,hy, t; = tanhk h2, € =1-7, and w, is the wave frequency. If we specify the
amplitude of the incident Wa,ve Co in Eqn. (1) to be the amplitude of the interface displacement, then

the incident wave potentials ¢0 can be written as:

¢(1) Wwn w2 tanh kphy — gk,
kn w? — gk, tanh k,hy

cosh k,z — sinh k,,z) ei(k"(’°°sﬁ+y5inﬁ)"’t), n=1,2, (9)

¢(2) — z’wn (COSh(kn(z + h2))) kn(mcos[3+ysmﬂ)—ot)
0 kn \ sinhkahy

where § is the incident angle measured from the positive z-axis, and o is the encounter frequency and
is related to w, and k, through the following relation:

n=1,2, (10)

0 = wyp — Uk, cos . (11)
. Radiation and Diffraction Potentials

From Eqns. (1-7), we can obtain the following boundary-value problems for the radiation and
diffraction potentials ¢§m), ji=1,...,7.

V2™ = o, 0<z<hy, m=1, —hy < 2<0,m=2, (12)

~ 2\~ 2i0U\) + UZg) +g6l1) = 0, z=hy, (13)

8% = ¢, 2=0, (14)

v (~o%¢{) — 2i0U{) + U?4(), + 94)) = 026 - 2icUZ + U6, + g, z=0, (15)
¢(?z) =0, z= —hg, (16)

0 = —¢f), o\ = ion; + Umj, xe 5, (17)

where S is the mean body surface, and nj, m; are defined as in [6]:
n = (ny,ng, n3), X X n = (ng, ns, ng), (18)
mi=My=M3g=My = 0, ms = ng, meg = —MNa. (19)

An appropriate radiation condition is also imposed on ¢§m) for uniqueness. Once ¢§1) are solved, the
hydrodynamic coefficients and exciting forces can be obtained as in the case of a single-layer fluid [6].
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Figure 1: Paths of integration L; , and L,

5. Translating and Pulsating Green’s Functions

Using Green’s theorem, the unknown potentials ¢§~m), J=1,...,7 for a submerged body in the

upper fluid layer can be expressed in terms of the translating and pulsating Green functions G(™) as
follows:

™ (2,y,2) = / /gvg'(f, 7, )G™(E, n, (52, , 2) dS, (20)

where v; is the source strength distribution and is determined by applying the body conditions in Eqn.
(17). The resulting Fredholm integral equations of the second kind are solved using the well-known
panel method.

The formulation so far is analogous to the single fluid case. The main task now is the derivation
of the Green functions. These Green functions satisfy all boundary conditions of ¢§~m), i=1,...,7

except for the body conditions. To obtain G(™), we start with the unsteady potentials of a source
of variable strength, starting from rest and following an arbitrary path [4]. By specifying the source
strength as cos ot and the source path as £(t) = £, +Ut, we can then perform the necessary integrations
and limits as t — oo to obtain the following expressions for G(™):

> 1 % 2 cosh khy sinh(k(z — hy)) sinh(k(¢ — hy))Jo(kR
6 = 3 (A-1)e] 2Siah(k(z ~ M) snh(E(C = MDIER)

Tm  Tin sinh khy (cosh kh; cosh khg + 7 sinh khy sinh khy)

n=-—o0

2 (2 [onfeo 2 (3 2 [
Z{—/ / F,§1>(k,o)dkd9+—// F,£1>(k,e)dkda+—// FO(k, 6) dk df
=7 do Jo ™ Josry 7 Jglr,.,

R

o 24 cosh(k(z + hy)) sinh(k({ — h1))Jo(kR)
@ = - [ 22
¢ /0 cosh khy cosh khy + 7 sinh khy sinh khy dk + (22)
2 (2 fonfoo 2 3 2 [
3 —/ / FO)(k,8) dk df + —/ / FO(k,8) dk df + —// FO)(k,6) dk d6
n=1 LT JO JO T JOxJ Ly T JZJLam
where
R=(-+@y-n%  rhA=R+(E-(-2h),  rf,=R+(z+(-20k),
F{™(k,6) = ghewl P{™ e=ik(a=8) %0 cos(k(y — n) sin 6)

sinh khy(cosh khy cosh khg + 7 sinh khy sinh khg)(w} — w?)(w2 — (kU cosb + 0)?)

The functions P{™ depend on z and ¢ and are given in [4]. The angle 8}, depends on the speed U
and the encounter frequency o. For a given o, there exists a solution kj; to the following equation

o = wn(ky) — k3Cqa(kn), (23)

where C,, = dw,(k)/0k is the group velocity for mode n. If we define Uy = Cg,(k7;), then

g =

0 if U<U;,
. { (24)

cos™H(Ux/U) if U>U;.
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Figure 2: Internal waves due to point source, v = 0.9, hy/h = 0.8, U/+/(gh) = 0.05, o+/(h/g) = 0.187

The pa,ths L1 and L2, are defined in Fig. (1). The poles ki, and kg ,, with kin < kapn, are the
roots of w2 — (kU cos @ + 0)? = 0 for 6% < 6 < /2, and the poles k3n and k4p, with ks, < kq,, are
the roots for 7/2 < 8 < .

Fig. (2) shows the fluid interface elevation ¢(?) due to the translating and pulsating source. ¢ is
obtained from G(™ as follows:

(B = ~(io(v6W - 6) - (6 - 6, z=0. (25)

Only the real component of ((2) is shown in Fig. (2). This represents the internal waves at ¢ = 0.
Wave patterns due to the translation and oscillation of the source can be clearly seen. Surface and
internal waves as well as hydrodynamic coefficients for a submerged spheroid traveling in the upper
fluid layer will be presented at the workshop.
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