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1 Formulation

A thin plate of elongate form representing a floating airport covers a part of the undisturbed water
surface coinciding with the z — y plane of the coordinate system. The part of the z — y plane covered
by the airport is the region of —B(z) < y <0, 0 < z < L where B(z) is the breadth at  and L the
length of the plate. The positive z axis is taken to be vertically upward. Considering a conceptual
design of the floating airport which is several kilometers long, several hundreds meters long and several
meters thick, we may assume L = 400 and the thickness of the plate d = 0.

The airport will be built on the coastal zone where water depth is small compared with the length
of sea waves; we use linear shallow water theory for the analysis of the hydroelastic interaction of
water waves and the plate.

We suppose the regular waves being incident head on the plate whose velocity potential is written
as
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We consider B = oo hereafter in our analysis because the width of the airport is very large compared
with the wave length i.e. kB >> 1. One may readily extend the result with B = oo to the plate of
very large but finite width.

Velocity potential ¢(z,y)e* and the wave elevation {(z,y)e™*, which represents the vertical de-
flection of the plate in the ‘Plate’ region of —B(z) < y <0, 0 £ z £ L and the water-wave elevation
in the ¢ Water region other than ‘Plate’ region, satisfy the kinematic condition

iw¢ = —hV2¢ (2)

in both the Plate and Water regions. Here
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and h denotes the water depth.

In the Water region ¢ must satisfy the wave equation
V26 + k% =0 3

where the wave number & is given by
k=w/Vgh 4)
The following equation for ¢ in the Plate region derives from the equation of bending vibration of
the plate
DV + pgV2¢ + pgk’¢ = 0 (5)
Here D is the bending rigidity of the plate per unit length, p density of the fluid and g the acceleration
of gravity. We assume relatively small bending rigidity D = O(k™*) in eq.(5) to retain the first term.

Otherwise eq.(5) will lead to a different solution.
The dispersive relation corresponding to eq.(5), which determines the wave number k. of the plate

deflection in the region Plate, is
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DK} + pgk? — pgk® =0 (6)

which has two real roots +k,.

Our problem is to solve for ¢ satisfying the plate equation (5) in the Plate and the wave equation
(3) in the Water under the boundary conditions ensuring free bending moment and free shear force
on the edge of the plate and the radiation condition in the far farfield.

Here we are concerned with the solution at the location z = O(1) which is away form the corner

at (x =0, y = 0). The plate is in the head sea of eq.(1) and it is reasonable to attempt a solution of
the form

$(z,y) = 91(2,9)e™** + Yz, y)e A ()

where the variation of 4, 2 in z is small within a wave length, the characteristic scale being the plate
length or breadth.

2 Solution for

41 results mainly from the interaction of the incident waves with the edge of the plate along the z
axis . The vibration of the plate at = O(1) will be restricted mainly within the distance of wave
lengths to the edge of the plate ( y = —O(k™!) ). Therefore

a¢1 O(kthr) = O(kat) (®)

Substitute 11 €* into the plate equation (5) to retain the lowest order terms of O(k?), we have
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A solution of eq.(9) that is finite at y — —oo is written in the form
3
1= Bj(z)e"" (10)
J=1

where p; are roots of eq.(11) with non negative real part.
D(u2 — k) + pg(uZ — k) + pgk? = 0 (11)

In the Water region of y > 0 the slowly varying character of ¢; allows us to drop 8%4:/8z?
compared with 824, /8y? in the wave equation (3) and leads to the parabolic approximation.

3¢1 Py

5 6 -5 =0 (12)
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This approximation is valid in the Water region close to the edge along the = axis of y = O(k~1/2).
Now we ignore the effect of the corner at the origin of the coordinate system (z = 0,y = 0) and
therefore we require the initial condition for eq.(12) of no disturbance to the incident waves at = 0

=1 at z=0 for y>0 (13)

and the far-field condition
=1 for y—+oo foral =z (14)

120




Then a solution of eq.(12) is given by

P =1-— e~ ky?/2(z—¢) (15)

1-i /z dt Vi(6)
2vrk Jo Tz —=¢
with an unknown function V;(z).

Matching conditions of the solution (10) in the Plate region and (15) in the Water region are
imposed at y = 0: conditions of free shear force, free bending moment and continuity of mass flux and
energy flux. Determination of the unknowns P; and V; is rather straightforward and the description
is omitted.

3 Solution for

Before solving 12 we consider a different problem for ¢, when the plate extends from y = —oo to
y = +oo without the edge along the z axis. ¢, is a 2D solution independent of y and readily obtained
(Ohkusu and Namba 1998). At z = O(1) the evanescent part of ¢, dies out; no reflection comes from
the aft end of the plate at = co. Therefore we have

e (2) = Age™*A" (18)

where Ay is determined with the conditions of free bending moment etc. at the edge along y axis.
Our solution 12e¥4% must obviously approach to Age~*A% as y — —oco where the edge effect
diminishes because it is far away from the plate edge along the x axis. 12 will be considered as the
interaction of the deflection wave Age™ 4% of the plate with the plate edge along the z axis.
The Plate region is divided into two domains, Region 1 (y = —O(k;l/ %)) and Region 2 (y =
—O(kxl)). The plate equation (5) for 1o will be approximated by dropping the z—derivatives relative

to the y—derivatives whose magnitude is of different order in Region 1 and 2:

0? ., 0 .
(pg + 3Dkﬁ)( a;/;z - 2zkA%> =0 (Regionl) (19)
6 64 62 .
D aa;? - 3Dk%—a;i2 + (pg + 3Dk}4x)‘—ay¢22 =0 (Region2) (20)
A solution of the parabolic approximation (19) to be matched with Ay at y = —oo will be given in
the form
1—i [ Vo) _ikay?/o(a—
= Ap — ikay?®/2(z~£) 21
Y2 = Ao ok Jo Xt (21)
It is straightforward to derive a general solution of eq.(20). It is written as
4
o= Eje”Y+ay+fB (22)
Jj=1

where E; and a, 8 are constants. o;(j = 1,2,3,4) are roots of the equation

Do* — 3DK30% + (pg +3Dk}) =0 (23)
In the Water region of y = +O(k~1/2), the wave equation (3) will be approximated by
e 2 _ 12
Y2 L (k2 — K)ehp =0 24)
592 + ( A2 (
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We choose the solution of eq.(24) as

o = Rexp[—i\/k? — k3] (25)

because k > _kA and our solution is to satisfy the radiation condition that no waves come from y = +oo.
R is an unknown constant.
Matching conditions (22) and (25) at y = 0 are

Ei+E;+B8—-—R=0, 01E1+02E2+a+i\/k2—-k,2\R=0 (26)

where E3 = E4 = 0 is chosen because o34 are negative in real part. Equation (21) at y = 0_ must
match with eq.(22) at y = —c0. It yields

a+Vo(z)=0, B+ 1-1 /zdﬁ Y2(6) = Ap (27)
’ 2v/mkp Jo v —=¢
Two other conditions are free shear force and free bending moment conditions at y = 0 which are
2 2 ,
> 0iPEj+ky(2-v)a=0, > PEj+kivS=0 (28)
j=1 j=1

where v is Poisson’s ratio of the plate and
Pj = (0} = K)* - (1 = v)k} (o] — K})] (29)

Six unknowns Ej2,, 3, R, and V; are determined from six equations (26), (27) and (28). For
example V; when B(z) is constant is given by

Ay _; 1—i
Vo(z) =-Zﬂe-w/2’mzzerfc(2 \/E,Izz‘/;) (30)

where erfc is the complementary error function and Z is a constant determined by P; and o;

Once V() is known, all the unknowns (E1, B, R, o, 3) are readily determined to give the deflection
of the plate in Region 1,2 and the wave elevation in the Water region. We notice that it does not need
any numerical computation to solve the problem except for evaluating the final integral expression for
the plate deflection.

For the finite B the symmetrical solution from another edge at y = —B is superposed to give the
solution when z = O(1). The plate deflection predicted by the present method agrees almost perfectly
with the results by more computationally involved method i.e.a numerical boundary integral method
using several thousands panels. Comparison of the results will be presented at the Workshop.
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