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1. Introduction

A very large floating structure (VLFS) planned in the Mega-Float project in J apan has a thin plate configuration
of very large horizontal size, and can be modeled as a membrane sheet of small bending rigidity floating on the
water surface. This modeling leads a new free surface condition which governs wave motions in the plate, and
makes the analysis of hydroelastic behavior of VLFS simpler. Although this approach has long history in the
field of ice floe, at last some studies has applied it to VLFS, for example [1], instead of so-called modal analysis.

Benefit of this approach is not only simplicity of the solution but also making people understand the hy-
droelastic behavior of VLFS easily, since it insists that the deflection of plate is represented by a wave motion
in the plate. In this paper, motion of a corner of VLFS is focused on with this approach because the present
plan of VLES has rectangular corners and these corners could show a singular behavior from a mathematical
and/or physical point of view. At first, we start to derive a boundary integral equation with Green’s function
which satisfies the elastic free surface condition. Then averaging it in vertical direction, we obtain the shallow
water approximation of the boundary integral equation. Finally we discuss about several numerical procedures
and the behavior of solution i.e. the hydroelastic behavior of VLFS in waves.

2. Boundary Integral Equation

Suppose a flat floating plate of very small draft located in the x-y plane which coincides with the still water
surface and z axis is vertically upward. Assuming that the velocity potential & is harmonic in time with an
angular frequency w , it can be represented as &(z,y, 2,¢t) = R [¢(z, y,2)e™*| The velocity potential satisfies
Laplace’s equation and the zero-draft approximation leads the following boundary conditions.
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where, K = ﬁ"gi s M =D/pg and v* = 8} + 82. D is the flexural rigidity of the plate, g is the gravitational
acceleration and p is the density of the water. Equation (1) leads a dispersion relation in the plate.
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Two roots of (4) are fond on the real axis, innumerable roots are located on the magma.ry axis and other four

roots are also found in each quarter plane.
Applying Green’s second identity to the fluid region covered with the plate and evaluating the integral over

the plate by integration by parts, the following boundary integral equation is obtained.
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Where, ¢ is a integral path which coincides with the edge of the plate and n denotes the normal measure inward
to the fluid. The Green function satisfies the elastic free surface condition and it is represented as follows:
G4(z,y,2, :L", y” z,) =
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Where,
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Applying the contour integral to the .Green function, it is represented by a summation of the Ha.ﬁkel functions.
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At the edge of the plate, the fact that the moment and the sheering force are free leads followmg two conditions.
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If we solve the boundary integral equation (5) together with the edge boundary condition (11) and certain
forcing term, the deflection of the plate would be obtained.
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3. Shallow Water Approximation

It is well known that the water wave problem is greatly simplified by the shallow water approximation, since
all evanescent terms are vanished.
Employing the shallow water approximation, the velocity potential can be represented as follows:
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Substituting (12) into (5) and performing integration respect to z’, the boundary integral equation (5) becomes
very simple.
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Where, Q(k) denotes the dispersion relation which is represented as follows:
QUk) = K - (1+ MkY)k?h %)

and a, (n=0,1,2,3,4) are roots of (k) = 0. ) ’ _
It is noted that higher order terms proportional to O(h?) are neglected in the integral equation (1:.’;). Therefore
all equations are consistent up to the order of h, and the two-dimensional velocity potential ¢ satisfies the free

surface condition.
Ko+ (1+ M) VP ph=0 (18)

The Green functions (14), (15) and (16) implies that the velocity potential ¢ is represented in the eigen function
expansion form which are composed of the Hankel functions or the Bessel functions.
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4. Corner Problem

Suppose a semi-infinite quarter plate which occupies (z > 0,y > 0) and plane progressive waves coming from
the fluid region whose angle of direction is x. It is obvious from the radiation condition that the contribution
of infinity boundary vanishes. Therefore, the path of integral in (13) becomes £ =0 and y = 0.
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Similarly a boundary integral equation for the out side of the plate is obtained.
ot 8 9y had 7] Oy
== [ (v~ 55) el - [ (o az,) Gl 0,1,/ )dy/ (20)
where, - “ .
11 K i
Gu(@, 2, 9,¢) = 5= F (m - 1) Jo(kR')dk = §H§2)(koR') | (21)

ko denotes the root of shallow water dispersion relation.

In order to derive the eigen function expansion of ¢, we apply the additional theorem of the Bessel function
to decompose the Green functions in (19). But, it is immediately found that the uniform expansion can not
be obtained. This result is not surprising because when the observation point is far from the corner point the
solution must be represented with a series of the Hankel function, on the contrary, when the observation point
is close to the corner the solution has no singularity and can be represented with a series of the Bessel function.
It seems this difficulty prevent to find the solution in an eigen expansion form. Therefore we try to solve the
boundary integral equation (19) directly.

A difficult point of solving (19) is that the boundary has infinite length. But, fortunately we know the
solution far from the corner which coincides with the solution of the semi-infinite half plate problem. It is
obvious that this solution is sinusoidal along the boundary. Thus, we assume the sinusoidal distribution of
normal velocity along the x-axis as the first step. .

- .
I = lim | e "*k—7'q(z,2' y,0)ds’

€0 fq

- N 1 it —i(ky—i€)z’ /oo 1 K Y ]
- e&r—eoﬂ/; € o k \(K —i)coshkh — (1 + Mk*)ksinhkh 1) Jo(kR))dkds"  (22)

Where, € and ¢ ensure the radiation condition.
App}ymg a contour mtegta,l to (22), a component of plane waves can be derived.
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It is noted that C; denotes plane progressive waves and it does not affect the other edge i.e. on the line z = 0.
Cr2 and Crs are also plane progressive waves, however their wave number is a complex number and these waves
decay quickly as the coordinate y becomes large. The first three terms in (23) represent the end effect and the
first term is asymptotically proportional to 1/v/R. When the observation point is far from the corner, the end
effect vanishes and the solution coincides with the solution of the semi-infinite half plate problem. Similar result -
is also obtained in the fluid region.
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Now, we know the solution at the infinity and the solufion decays proportionally to 1/ VR, and the conventional

numerical procedure can be applied to get the corner effect. However, the convergence of 1/+/R is not rapid.

Therefore, in order to subtract the contribution of the terms which are proportional to 1/v/R, the following
integral is performed.
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. Where o, is determined from the geometrical relation between o and ay in the complex plane.

It is obvious that 1/4/z distribution leads only a three-dimensional wave term, however it does not satisfies
Green’s theorem because of a contribution from the terms which decay more rapid than 1/ VR. Similar results
are also obtained in the fluid region.

... Utilizing these integrals, the plane wave term and the three-dimensional wave term can be subtracted
from the boundary integral equation (19). Then, only the local term which decays rapidly is computed by a
" conventional numerical procedure.

Several attempts to solve this integral equation will be shown in the workshop and the hydroelastic behavior
of VLFS also will be discussed. .
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