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1 Introduction

The following problem was brought to my attention by G.X.Wu who has been concerned with the com-
putation of wave forces on bodies in a canal. The simplest case is 2 submerged sphere. Let rectangular
cartesian axes (z,y. =) be taken with the origin in the mean free surface y = 0, where y increases with
depth. A submerged sphere of radius a is placed with its centre at (0, f,0), midway between parallel
vertical walls z = £(, where £ > a and f > a. The motion is assumed to have angular frequency w
and small amplitude. The normal velocity on the sphere is prescribed and is symmetrical about the
mid-plane z = 0, antisymmetrical velocities can be treated similarly. (In fact the method is appli-
cable for any submerged position of the sphere.) The corresponding velocity potential is denoted by
d(z,y, z) exp(—iwt) and is to be found. (The time-factor exp(—iwt) will henceforth be omitted.) Then
the governing equation is Laplace’s equation

g d? &
(5?4"@4- ) #(z,y,2) =0, (1.1)
with the boundary conditions 0
53-—00112:—&(’ (1.2)
and the boundary condition s
K¢+a—j=00ny=0, (1.3)

where K = w?/g. Let spherical polar coordinates (r,8,a) be taken about the centre of the sphere, such
that
z=rsinfsina, y = f+rcosb, 2 =rsinfcosa, (1.4)

where
=2t (y - P+

Then the boundary condition on the sphere r = a is of the form

g—o = Up(f,a) = Z Z_ U(m,n) (En o s :3') P7(cos 8) cosma, (1.3)
n=0 m=0

where Uy(6,a) is a prescribed function with known coefficients U(m,n) and is even in a. (As has been

noted, odd functions can be treated similarly.) There is also a radiation condition at infinity: the waves

travel outwards towards z = +o0.

Here a brief account will be given of work which is to be published elsewhere, see [Ursell 1999]. The
solution ¢(z, y, z) of our boundary-value problem is written as the sum of multipole potentials,

o© m=n 1/2
$(z,32) =) Y C(m,n)a™*! <(" ) (G)es (1.6)

!
n=0 m=0 ( + m)
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where the multipole potential (G ) has the singularity r~"~! P™(cos§) cos ma at the centre of the
sphere and satisfies the boundary conditions on the free surface, on the side walls, and at infinity. Ex-
pressions have been found for the multipole potentials, by methods which are complicated but essentially
straightforward and which are briefly described in section 2 below. (These expressions are not unique,
although the multipole potentials are uniquely defined.) When these potentials are expanded in spherical
polar coordinates (1.4) and the boundary condition (1.5) is applied, the coefficients C(m,n) in (1.6) are
found to satisfy the system

oo N
C(m,n)+ Z a(m,n; NYC(m,N)+ Z Z bm.n: M,NYC(M,N)= ——— U(m n) =d(m,n),
N=0 N=0 M=0

0<n<oo,0<m<n. (1.7)

"The coeficients in the expansions involve single and double integrals. To complete the mathematical
treatment it is necessary to examine whether the system (1.7) has a solution, and whether the resulting
series (1.6) is convergent in the whole physical domain. Here it will be shown that for our problem our
construction does indeed provide a valid solution, except possibly for a discrete set of values of K. This
result is of interest because such convergence arguments have previously been given in only a few simple
cases. The proof depends on the theory of infinite linear systems which is analogous to the theory of
integral equations but simpler. We shall apply the following fundamental result :

Suppose that in the infinite system (1.7) the coefficients a(m, n; N), b(m,n; M, ) and d(m,n) depend
analytically on a parameter K and satisfy the conditions

oo oo oo o 00

Y3 S lamuN)P<oo )O3N Z [b(m, n; M, N)P? < oo, szz(m n)? < oo
m=0 n=m N=m

m=0n=m M=0 N=\{ m=0 n=m

Then there exists a unique solution {C(m,n)} such that 3°°°_ 5~ |C(m,n)[? < 0o, except possibly
for a discrete set of values of K. The proof of this fundamental result is omitted, it is a simple adaptation
of the classical proof when the terms a(m,n; N) are absent, and involves only Schwarz’s Inequality
(IXYD? < (TIXPXTIY)?). It is easy to deduce from this result a stronger form of the theory:
Suppose that in the infinite system (1.7) the coefficients a(m,n; N), b(m,n; M, N) and d(m,n) satisfy
the conditions

E Z E ja(m,n; N)| < o0 Z Z Z Z [b(m,n; M,N)| < oc, Z Z |d(m,n)| < oo.
m=0 n=m M=0 N=M

m=0 n=m N=m m=0 n=m

Then there exists a unique solution {C(m,n)} such that Y oo_ 5~ |C(m,n)| < oc, except possibly
for a discrete set of values of K. We shall see that we must prove the convergence of fourfold sums of
single or double integrals.

In our derivation of the multipole potentials use is made of the ideas of Havelock’s wavemaker theory
[Havelock 1929] which is based on the following inversion theorem (the Havelock transform). Suppose

that the function f(y) is defined in the interval 0 < y < oo, and suppose that the constant K is positive.
Then the function f(y) can be expanded in the form

o0
fly) = Age~K¥ 4 / Bo(k)(k cos ky — K sin ky)dk, (1.8)
0
where
-k >
K/ .f(y ’dy andBo( ) —(m/ f(y) k'cosky -—Ixsmky )dy (19)
This expansion is appropriate for functions satisfying the end condition

Kf(y)+di1!;f(y)=0wheny=0.
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2 The Multipoles

In our work the multipole potential (G} )¢ in the expression (1.6) is constructed in two stages. In the
first stage an expression (G} )eo Was found for the multipole in the absence of side walls:

P (cosé - *k+K
(C)e0 = nr(:fls Y conmart (1: r)n)’ / I.-+K k" e *OtD 1 (kp) d cos ma, (2.1)
— 2 e 0 y —

where (here and later) the path of integration passes below the pole k = K. Then the radiation condition
at infinity is satisfied . The potential (G? ) can be transformed into a three-dimensional Havelock
wavemalker expansion when z > 0, and similarly when z < 0. The normal velocities induced by (G7)
on the side walls z = £/ can therefore be found explicitly as the sum of a single and a double integral. In

* the second stage of the construction these velocities are reversed, they generate a wave motion (G7)image
in the canal which can be found explicitly by use of the three-dimensional form of Havelock’s wavemaker
theory as the sum of a single and a double integral. Finally we write

(G:zn)[ = (Gnm)x + (GT )image-

We quote the expressions for (G )image :

2 et ke
(GRimage = m(—l)"‘*’ im gt~ Kt o

oo+ wi ‘ 1
X / dw A7 (w) exp(—K z sinh w) cos( Kz coshw) coshm({w + é-m')
—co—1mi

(2.2)
-————f-———i"*'"‘ /00 dk ——lz—-(k cosky — K sinky)F(k, K, f,n — m) X
n(n —m)! 0 k2 4+ K2 A

X / dv B} (k,v)exp(—ikzsinhv) cosh(kz coshv) cosh m(v + ;i—m'), (2.3)

where

. _ f (kcoskf— Ksinkf) when s is an even integer,
F(k, K, f,s) = { —i(ksinkf + K coskf) when s is an odd integer. (24)

The factors involving y show (as has already been noted) that this expansion for (G )image is a wave-
maker expansion of Havelock type. It is found that

.exp(iK £ coshw)

exp(—k{coshv)
! sin( K¢ coshw)

Az (w) = sinh(kfcoshv) ’

and Bl (k,v) = (2.3)

these values are independent of m and n .

We next expand the integrals in terms of polar coordinates (1.4) and can then impose the boundary
condition (1.5). We thus obtain expressions for the coefficients a(m,n:N) and b&(m,n;M,N) in the
system (1.7) in a form involving single and double integrals. The coefficients a(m,n; N') come from the
component (G™)oo. Thus the coefficient of rVP3!(cos 8) cos Ma in (GT ) is found to be

(=1)™+N /°° k+K  oon _—2kf d
= v k 2.6
Amon N)= o S w a0 ), ik © ’ (26)

and the coefficient of rVP¥ (cos ) cos Ma in (G™ )image is found to be

, KN ok 2 ntm+N+M pon
B(m,n,M,N) = eM(N.*.M)! e 2I\f(n‘nz)!(_1) +m+N+M prati o
/°°+%"i exp(—K ¢ coshw)

x B s

1 . 1 .
n(Klcohw) cosm(§7z' —iw) cosM(E'k —w) dw

—Lxi
oo 3 Wi
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( _l)M 4 jntmEN
N+ 2D 7 (n=m)!

+ em X

o0 kn+1\'
x /0 dk gz Pk K, fon—m) F(k, K, f.N = M) .

/ do exp(—k€ cosh v)

1. 1, -
. ™ Sinh(Ffcoshv) coshm(» + 57:2) cosh M(v + —2-7r7.),. 2.7)

where o = 1 and ey = 2 when M > 1. It is then not difficult to show that

nN1/2 o 172
a(m,n;N) = ._n_% (E%‘}%) aVtntl (H) A(m, N,n), (2.8)
and that
1 1/2 r sy 1/2
b(m,n; M,N) = n—:‘__l (%) aNHntl (%) B(M,N,m,n). (2.9)

If we can now find bounds for the integrals in (2.6) and (2.7) then we shall have bounds for a{m,n; N)
and b(m.n: M, N) . It has been found that bounds of the simple form '

-
;/ﬂMiHS/U@NMﬂ

are sufficient for this purpose. We therefore have to show the convergence of series like

o oo N n
PIDIDID IR
N=0 n=0 M=0 m=0

where

N4nt I D{HN+n+ M+m+ D)IT{I(N+n—-M-—m+1)}
{(N + MN — M) (n +m)(n —m)!1}1/2

and this can be shown provided that ¢ < ¢. Similarly we can show the validity of the multipole expansion

in the whole field of flow, except that the components (GT)o, need a more careful treatment which was
in effect given at the last Workshop in Holland, see [Ursell 1997).

6P (m,n; M, N)| < A (%)

(2.10)

3 Discussion

The foregoing treatment has been based on the wave potentials (2.1) and a Havelock wavemaker cal-
culation. (It is not difficult to show that the method can be extended to any submerged position of
the sphere and to arbitrary prescribed velocities on the sphere.y This seems to me the most natural
approach. Wu in his work started from a different expression for the wave-source potential (GY)o.. He
then obtained the wave-source multipole by repeated reflection in the side walls and deduced a complete
set of multipoles by differentiation. His approach and mine are equally valid, but I think that it would
be difficult to use his expressions to prove convergence of his process. Wu’s work, also containing his
computations, was published in [Wu 1998]. Wu has recently checked my mathematical calculations and
has used them to compute numerical values. He has found that these agree with his earlier computations
in [Wu 1998].
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