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ABSTRACT

A nonlinear theory to predict wave resistance of ships with
low block coefficients is developed. The theory is based on a
linear and second order 3-D theory and an additional nonlin-
ear correction by a fully nonlinear 2%D solution in the bow
region. The numerical code is verified by analytical solutions
and thin ship theory. The theory is validated by comparing
with model tests of a series of passenger ships and container
ships.

INTRODUCTION

The motivation for developing a new numerical code to pre-
dict wave resistance of conventional ships with low block co-
efficients is that current numerical codes do not predict the
wave resistance satisfactorily, especially in the design stage
when evaluating different concepts with small differences in
the geometries.

Linear and nonlinear numerical methods to predict wave re-
sistance have been studied by many authors. Raven(1996)
gave an extensive review about the subject. A short sum-
mary about different methods will be given here. The linear
methods consist mainly of two solutions, namely Neumann-
Kelvin and Dawson(1977) methods. In the Neumann-Kelvin
problem a linear classical free surface condition is used and
the Dawson method is based on a linearization on the dou-
ble body potential. The nonlinear solutions are based on the
fully nonlinear free-surface conditions and the solutions are
obtained by iterations. The nonlinear methods predict bet-
ter wave elevation around the ship, but not necessarily bet-
ter wave resistance. Limited results of nonlinear wave resis-
tance calculations have been presented for real ships. Gener-
ally speaking the linear methods predict fairly well the wave
resistance for ships with low block coefficeints and the non-
linear solutions may give better results, but not always get
convergence and correct results.

We are looking for a numerical method for ships with block-
coefficient Cp lower than 0.6 to 0.7. That means that the
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ship is fairly slender. The method should also be robust and
easy for an engineer to use. Since the linear solutions predict
quite well the wave resistance for relative slender ship, our
idea is to introduce nonlinear corrections for predicting better
wave resistance. We start with the linear problem(Neumann-
Kelvin) with linear free-surface condition satisfied on the
mean water surface. When one calculates wave resistance,
nonlinear terms will be included in a similar way as for the
second order problem of mean drift force. That means that
the quadratic term in the Bernoullis’ equation and a water line
integral are included. For the wave resistance problem it is
believed that the strong nonlinear effects are only located in
the bow region. Then one can use a linear and second order
and nonlinear 2%D methods to predict additional nonlinear
contribution at bow region. The 2§D method means that one
use two-dimensional Laplace equation and three-dimensional
free-surface conditions. The 2%D solution is valid for high
Froude number, so the method can only apply in the bow re-
gion with a high local Fronde number.

THEORY

A potential theory is used to solve the wave resistance prob-
lem since the viscous effects are neglected here. The problem
is solved as a steady problem. The effects of trim, sinkage and
transom stern are not included in the analysis.
A right-handed coordinate systems £ = (z,y, 2) has been
chosen. £ = (z,y, z) is a coordinate system fixed in the ves-
sel. The surface z=0 is the mean water surface when the for-
ward speed of the ship is zero. A velocity potential ¢ =
¢+ Uz isintroduced. Here U is the forward speed of the ship
and ¢ satisfies the Laplace equation
V¢ =0 M
in the fluid domain.
Following Newman(1976) the nonlinear dynamic free-
surface condition on the exact free surface can be written
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Here ((z,y) is the free surface elevation.
The body boundary condition on the exact wetted body sur-
face Sp can be written as
0¢ _
o
where 7 = (n3, ng, ng) is the normal vector on the body sur-
face. Positive direction of 7 is into the fluid domain.
The problem will be solved in two levels. The first approxi-
mation is based on the linear classical free-surface condition
on the mean water surface. Then a local nonlinear correction
near the bow region is carried out by using 2%D methods.
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Linear and second order 3-D solution

The first approximation is based on the linear classical free-
surface conditions on the mean water surface. Here one as-
sumed that the ship is fairly slender. Neglecting the nonlinear
terms in the equation (2) and (3) one obtains the linear classi-
cal free-surface condition
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The velocity potential ¢ for the flow is solved by us-
ing Green’s second identity with 3-D Rankine sources and
dipoles.. The numerical procedure and radiation condition are
similar as Dawson(1977).

The pressure P on the wetted body surface can be obtained by
the following equation
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The wave resistance R,, can be written as
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Here Sg is the wetted body surface. The first term in equa-
tion (6) is the leading order term for the pressure. The reason
to take into account the nonlinear terms in equation (6) will
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be explained in the following text. It is assumed that —pU %ﬁ
is the leading order term for the pressure. This pressure term
oscillates along the ship like the free surface elevation along
the ship. This means positive and negative contributions to
the wave res1stance from d1fferent parts along the ship. The

term -0.5p[( ) +( ) +( 8z) ]glves lower contribution
to the pressure compared to the first term in eq.(6), but it
has negative sign along the ship. This means the integrated
contribution to the wave resistance is important relative to
the first term in eq.(6). These two pressure terms are first
integrated to the calm water surface. Then the nonlinear
contribution on the real wetted surface should be corrected.
The terms —pU %g — pgz give contribution from the calm
water surface to the real free surface.

Additional nonlinear correction

The additional nonlinear corretion is based on 2%D methods,
which are based on two-dimensional Laplace equation and
three dimensional nonlinear free-surface conditions. Here
one introduces a slenderness parameter ¢, the ratio between
the beam(or draught) and the ship length. One assumes that
g = o(fed), & = o(fe) and & = O(fe),

where fis any flow vanable caused by the body in the reglon
closed to the body. Further one assumes thatn; = O(e?)
where n; is the x-component of a unit normal vector to the
wetted part of the body surface. The assumptions follow the
similar approach of Faltinsen and Zhao(1991) in solving the
problem of ship motion for high speed vessels. Based on the
assumptions the three-dimensional Laplace equation(eq.(1))
will be two-dimensional Laplace equation for each cross sec-
tion. The nonlinear dynamic and kinematical free-surface
conditions can then be written as
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where {(z, y) is the free-surface elevation.

The Green’s second identity based on 2-D Rankine sources
and dipoles can be applied for each cross section. A solu-
tion can be found by starting at the bow, use equation (8)
and (9) to step the solution of the free surface elevation ¢
and the velocity potential ¢. For each cross section a two di-
mensional problem is solved. The start conditons are { = 0
and ¢ = O in Faltinsen and Zhao(1991). Later Fontaine
and Faltinsen(1997) pointed out that the ¢ is different from
zero even for a very thin ship bow. Since the linear three-
dimensional problem is solved first, one may use it as start




condition. In our numerical solution the start conditions of
¢ and ¢ are based on the linear three-dimensional solution.
It is found out that the start conditions are important for the
wave resistance of passenger and container ships, but not sig-
nificant for slender bodies as the Wigley hull and catamarans.
The Z%D solution is only applied in the local region near the
bow. A similar linear velocity potential can be obtained by
neglecting nonlinear terms in the free-surface conditions (8)
and (9). Then the free surface conditions will be the same as
in solving linear three-dimensional problem and it will be sat-
isfied on the calm water surface. It was shown by matched
asymptotic expansion by Faltinsen(1983) that the linear Z%D
solution is an approximate solution for the linear 3D solution
in the bow region of conventional slender ships. The addi-
tional nonlinear effect can be obtained by the difference be-
tween the fully nonlinear 2%D and linear and second order
21 D solutions. The 23D methods is valid for Froude num-
ber is order of O(1). The theory can be used for the whole
ship for high speed vessels. For practical applications one as-
sumes that the additional nonlinear effect is only important in
the bow region and the 2§D methods are used from the bow
to the section with local Froude number large than Fnj3.",
but not for the sections after midship. Here one defines a local
Froude number based on the length from the bow to the actual
section. We choose Fni® = 0.6, because 21D methods
predict well wave resistance of catamarans for Froude num-
ber larger than 0.6. The additional nonlinear contribution is
not much dependent on the selected Fn[?i®, since the design
speed(Froude number) of ships with low block coefficient are
usually around or large than 0.3, and the n; component of the
normal vector on the body surface is small along the midbody.
The pressure on the body surface is

P=—pU——p2[( ) +( )]—pgz (10)
In the linear and second order 2-;—D method the pressure is in-
tegrated in a similar way as the linear and second order 3-D
problem.
The total nonlinear contribution R},°" can be obtained by a
following equation

RMo" = Rzgo R2§D

= *Yin
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where Rn%n and R;;; 2} 1) are wave resistances based on the so-
lution of nonlinear and linear and second order 21 D methods.

VERIFICATIONS AND VALIDATION

The numerical program of the linear 3D solution has been ver-
ified by comparing with analytical and semi-analytical solu-
tions. The first case is the flow past a sphere in infinite fluid.
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M2257 | M22S8 | M2259 | M2275 | M2175B | MIIT5C

Tengih on waterline (m) 2355 2355 | 2355 | 2335 5891 5965
Lpp (M 2.267 2.267 2.267 2.267 5926 5.000
Breadth waterline (m) 373 0373 0373 373 0.889 0889
Draught (m) 093 0093 093 093 0.299 0299 |
YVolume of. displacement 043 0.043 .043 .043 .884 .881
Prismatic-ooefficient 641 .05 550 584 577 368

[~ Biock-coeticient 343 343 543 335 561 553
Midship section coeficient 350 | 0.898 990 934 973 973 |
Longitudinal C.B, (LCB %) -3.69 -3.73 -3.74 -3.71 -4.46 -4.69
Wetted surface (m “) 0921 0924 0.944 0929 6.219 6.362

Table 1: List of principal hull data of a number of passenger
ships and car ferries, and two container ships.

Both the velocity potential and the velocity on the body sur-
face is checked. Satisfactory agreement is obtained.

The second case is to test the numerical solution against the
Green’s function(source) with forward speed. The Green’s
function satisfies the linear free-surface condition(eq.(5)), the
3D Laplace equation and the radiation condition. The test is
done in the following way. A small sphere near the free sur-
face surrounding the source is used as a body surface. The
body boundary condition is gﬂ = C, where C is a con-
stant. C is dependent on the radius of the sphere. The to-
tal mass flux is constant, which is equal to the mass flux due
to a source(Green’s function). The free-surface condition is
the classical free-surface condition (5), which is same as the
Green’s function satisfies. Then the velocity potentials on the
free surface are compared with each other. Good agreement
is obtained.

The method has been verified by thin ship theory for the wave
resistance of the Wigley hull. Good agreement between the
numerical and analytical solutions is obtained.

The theory has been validated by model tests for a number
of passenger ships and car ferries, which have been carried
out at MARINTEK. Here one chooses the models without ap-
pendices. The models M2257, M2258, M2259, M2275 have
been investigated. The principal hull data are given in Table
1. In addition two container ships with model M2175B and
M2175C have been used in the validation. The principal hull
data are also given in Table 1.

For optimization of the hull, the parameter midship section
coefficient C)y is studied experimentally. Figure 1 shows the
theoretical and experimental results for four models with dif-
ferent Cs. In the model tests the total resistance is mea-
sured. Since the model tests have not been done for small
Froude numbers, the form factor can not be predicted from
the model tests. Before one can compare with wave resis-
tance, one must estimate the viscous resistance. The empir-
ical formula of Holtrop(1984) is used here for estimating vis-
cous resistance. MARINTEK uses a different expression for
the form factor k;, which is given as

k; = 0.6C; + 145.0C,%® 12)

where Cp = %((TAP +Tep)B)*S (13)




Here T4 p is draught at AP, Trp draught at FP, L length on
waterline, B breadth and Cp block-coefficient. The viscous
force due to flow separation is not included in the form fac-
tor of MARINTEK. That means that the viscous drag force
is part of the residuary resistance. In the following compari-
son the residuary resistance is defined by MARINTEK stan-
dard. That means that the difference between the form fac-
tors of Holtrop(1984) and MARINTEK has been corrected.
It seems that the theory predict well the residuary resistance
for models with difference Cis coefficients.

Figure 2 shows the residuary resistance coefficients of mod-
els M2175B and M2175C. Both theoretical and experimental
results have been presented. The geometries of M2175B and
M2175C are identical except the model M2175C with bulb
and the model M2175B without bulb. The residuary resis-
tances are significaltly reduced for the model with bulb both
in the experimental and theoretical results. The numerical re-
sults agree well with experimental results.

CONCLUSION

A nonlinear theory to predict wave resistance of ship with
low block coefficients is developed. The numerical program
is validated by a series of passenger ships and two container
ships with and without bulb. The residual resistance from
model tests have been compared with theoretical results. For
a series of passenger ships and car ferries with different Cps
values, good agreement between the theoretical and experi-
mental results is obtained. The program predicts well the re-
sistance of container ships with and without bulb.
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Residuary resistance costiclent(EXP.) of model m2275,m2257,m2258 and m2259
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Figure 1: Residual resistance coefficient of model M2275,
M2257 and M2258 and M2259 with different Cs values.
The theoretical and experimental results are presented.
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Figure 2: Residuary resistance coefficients of modelM2175B
and M2175C. The theoretical and experimental results are
presented.




