Verification of Fourier-Kochin representation of waves

C. Yang*, F. Noblesse**, R. Löhner*

** School of Computational Sciences, George Mason University, USA

* David Taylor Model Basin, NSWC-CD, USA

The purpose of this study is to present a verification of the Fourier-Kochin representation of waves given in [1,2]. This representation expresses the waves generated by a given flow at a boundary surface in terms of single Fourier integrals and spectrum functions that are defined by distributions of elementary waves over the boundary surface. The Fourier-Kochin representation of waves is given in [1,2] for three classes of free-surface flows: (i) diffraction-radiation of time-harmonic waves without forward speed, (ii) steady ship waves, and (iii) time-harmonic ship waves (diffraction-radiation with forward speed).

The Fourier-Kochin representation of waves is considered here for steady flows associated with the linearized free-surface boundary condition $w+F^2\partial u/\partial x=0$ where $F=\mathcal{U}/\sqrt{gL}$ is the Froude number, and $(u\,,v\,,w)=\vec{u}=\vec{U}/\mathcal{U}=\nabla\phi$ is the disturbance-flow velocity; here, $\phi=\Phi/(\mathcal{U}L)$ is the velocity potential associated with the velocity \vec{u} . The Fourier-Kochin representation of waves defines the potential ϕ^W and the velocity \vec{u}^W associated with the waves that are generated by a given velocity distribution \vec{u} at a boundary surface Σ , which may intersect the mean free-surface plane z=0 along the boundary curve Γ . The boundary surface $\Sigma\cup\Gamma$ is divided into patches, i.e. $\Sigma\cup\Gamma=\sum_{p=1}^{p=N}\Sigma_p\cup\Gamma_p$, associated with reference points $(x_p\,,y_p\,,z_p)$, with $\vec{x}=\vec{X}/L$, located near the centroids of the patches.

The wave potential ϕ^W and velocity \vec{u}^W at a field point (ξ, η, ζ) of the flow domain outside a boundary surface $\Sigma \cup \Gamma$ are given by the single Fourier integrals

$$4\pi \begin{cases} \phi^{W} \\ u^{W} \\ v^{W} \\ w^{W} \end{cases} = \Re \int_{-\infty}^{\infty} \frac{d\beta \ \alpha^{d}}{k^{d} - \nu} \begin{cases} i \\ \alpha^{d} \\ \beta \\ i \ k^{d} \end{cases} \sum_{p=1}^{p=N} \left[1 + \operatorname{erf}\left(\frac{x_{p} - \xi}{\sigma F^{2} C}\right) \right] S_{p}^{W} e^{\left(z_{p} + \zeta\right) k^{d} + i \left[\left(x_{p} - \xi\right) \alpha^{d} + \left(y_{p} - \eta\right) \beta\right]}$$

where \Re e stands for the real part. The functions $\alpha^d(\beta)$ and $k^d(\beta)$ are defined as

$$\alpha^d = \sqrt{k^d}/F$$
 $k^d = \nu + \sqrt{\nu^2 + \beta^2}$ with $\nu = 1/(2F^2)$

Here, $k^d(\beta)$ stands for the value of the wavenumber k at the dispersion curves $\alpha = \pm \alpha^d(\beta)$, with $-\infty \le \beta \le \infty$, associated with the dispersion relation $F^2\alpha^2 - k = 0$. The function C in the error function erf is related to the curvature of the dispersion curves and is given by

$$C = 1 + \frac{3}{(F^2k^d)} - \frac{2}{(4F^2k^d - 3)^{3/2}}$$

We have C=2 for $\beta=0$, where $\alpha^d=k^d=1/F^2$, $C\to 1$ as $\beta\to\pm\infty$, and C=1 at the inflexion points defined by $F^2k^d=3/2$ and $F^2\beta=\pm\sqrt{3}/2$. The positive real constant σ may be chosen as in [2].

The contribution S_p^W of patch p to the wave-spectrum function $S^W(\beta)$ is given by

$$S_p^W = S_p^\Sigma + F^2 S_p^\Gamma \qquad \text{with}$$

$$S_p^\Sigma = \int_{\Sigma_p} d\mathcal{A} \left[\vec{u} \cdot \vec{n} + i \frac{\alpha^d}{k^d} (\vec{u} \times \vec{n})^y - i \frac{\beta}{k^d} (\vec{u} \times \vec{n})^x \right] e^{k^d (z + z_p) + i \left[\alpha^d (x - x_p) + \beta (y - y_p) \right]}$$

$$S_p^\Gamma = \int_{\Gamma_p} d\mathcal{L} \left[\left(t^x t^y + \frac{\alpha^d \beta}{(k^d)^2} \right) \vec{u} \cdot \vec{t} - (t^y)^2 \vec{u} \cdot \vec{\nu} \right] e^{i \left[\alpha^d (x - x_p) + \beta (y - y_p) \right]}$$

Here, the unit vector $\vec{n}=(n^x,n^y,n^z)$ is normal to the boundary surface Σ and points into the flow region outside Σ , and the unit vectors $\vec{t}=(t^x,t^y,0)$ and $\vec{\nu}=(-t^y,t^x,0)$ are tangent and normal to the boundary curve Γ in the mean free-surface plane z=0. The normal vector $\vec{\nu}$ points into the flow region outside Γ , like the normal vector \vec{n} , and the tangent vector \vec{t} is oriented clockwise (looking down). The spectrum functions $S^{\Sigma}(\beta)$ and $S^{\Gamma}(\beta)$ are defined by distributions of elementary waves over the boundary surface Σ and the boundary curve Γ , respectively, with amplitudes given by the normal components $\vec{u} \cdot \vec{n}$, $\vec{u} \cdot \vec{v}$ and the tangential components $\vec{u} \times \vec{n}$, $\vec{u} \cdot \vec{t}$ of the velocity \vec{u} at Σ and Γ .

Thus, the Fourier-Kochin wave representation defines the wave potential $\phi^W(\vec{\xi})$ and velocity $\vec{u}^W(\vec{\xi})$ at a field point $\vec{\xi}$ of the flow region outside a boundary surface $\Sigma \cup \Gamma$ in terms of the velocity distribution $\vec{u}(\vec{x})$ at the boundary surface Σ and the boundary curve Γ . This representation of the waves generated by a flow at a boundary surface only involves the boundary velocity $\vec{u}(\vec{x})$; i.e. the Fourier-Kochin wave representation does not involve the potential $\phi(\vec{x})$ at the boundary surface $\Sigma \cup \Gamma$, unlike the classical boundary-integral representation that defines the potential in a potential-flow region in terms of boundary-values of the potential ϕ and its normal derivative $\partial \phi/\partial n = \vec{u} \cdot \vec{n}$. The Fourier-Kochin wave representation is based on several recent new fundamental results obtained within the framework of the Fourier-Kochin theory [3,2]: (i) the boundary-integral representation, called velocity representation, given in [1,2], (ii) the representation of the generic super Green function defined in [4,5,2], and (iii) the transformations of spectrum functions given in [3,1,2]. The flow generated by a given flow at a boundary surface can be expressed as

$$\phi = \phi^W + \phi^L \qquad \quad \vec{u} = \vec{u}^{\,W} + \vec{u}^{\,L}$$

where ϕ^W , \vec{u}^W is the wave component defined by the Fourier-Kochin wave representation, and ϕ^L , \vec{u}^L is a local-flow component. The Rankine and Fourier-Kochin nearfield flow representation given in [6] expresses the local component ϕ^L , \vec{u}^L in terms of distributions of elementary Rankine singularities and Fourier-Kochin distributions of elementary waves over the boundary surface Σ and the boundary curve Γ . The local component ϕ^L , \vec{u}^L is not considered here.

For the purpose of verifying the foregoing Fourier-Kochin wave representation, the flow due to a source-sink pair is considered here. Fig.1 shows the disturbance velocity (u,v,w) generated by a point source and a point sink, of strength $q=Q/(\mathcal{U}L^2)=0.001$, located at $(x,y,z)=(\pm 0.5,0,-0.02)$ over the lower half $z\leq 0$ of the ellipsoid $x^2/a^2+y^2/b^2+z^2/c^2$ with (a,b,c)=(0.55,0.05,0.1). The velocity distribution (u,v,w) generated by the point source-sink pair is evaluated, for a Froude number F=0.316, using integral representations of the Green function given in [7]. The upper half of Fig.2 depicts the free-surface elevation, computed using integral representations of the Green function, due to the source-sink pair. The lower half of Fig.2 depicts the free-surface elevation obtained using the Fourier-Kochin wave representation and the velocity distribution generated by the source-sink pair at the ellipsoidal boundary surface depicted in Fig.1. The free-surface elevations computed using expressions for the Green function (upper half) and reconstructed using the Fourier-Kochin wave representation (lower half) are not identical in the vicinity of the ellipsoidal boundary surface because the local-flow component u^L is ignored in the Fourier-Kochin wave representation. The wave elevations shown in Fig.3 along the four longitudinal cuts y=0, y=0.06, y=0.1, y=0.5 show that the local component u^L in fact is only significant in the vicinity of the elliptical boundary curve.

The results depicted in Figs 1-3 provide a verification of the Fourier-Kochin representation of waves. Furthermore, Fig.3 shows that the wave component is dominant even in the nearfield. Illustrative practical applications of the Fourier-Kochin representation of waves are given in [8,9]. Specifically, the Fourier-Kochin representation of steady ship waves is coupled with nearfield calculations based on the Euler equations in [8] and is applied to the design of a wave cancellation multihull ship in [9].

References

- F. Noblesse (2001) Velocity representation of free-surface flows and Fourier-Kochin representation of waves, Appl. Ocean Res. (in press)
- [2] F. Noblesse (2001) Analytical representation of ship waves, Ship Techn. Res. (in press)
- [3] F. Noblesse, C. Yang (1995) Fourier-Kochin formulation of wave diffraction-radiation by ships or offshore structures, Ship Techn. Res. 42:115-139
- [4] F. Noblesse, X.B. Chen (1995) Decomposition of free-surface effects into wave and near-field components, Ship Techn. Res. 42:167-185
- F. Noblesse, X.B. Chen, C. Yang (1999) Generic super Green functions, Ship Techn. Res. 46:81-92
- [6] F. Noblesse (2001b) Rankine and Fourier-Kochin Representation of Near-Field Ship Waves, submitted
- [7] F. Noblesse (1981) Alternative integral representations for the Green function of the theory of ship wave resistance,
 J. Eng. Math. 15:241-265
- [8] C. Yang, R. Löhner, F. Noblesse (2000a) Farfield extension of nearfield steady ship waves, Ship Techn. Res. 47:22-34
- [9] C. Yang, F. Noblesse, R. Löhner, D. Hendrix (2000b) Practical CFD applications to design of a wave cancellation multihull ship, 23rd Symp. on Naval Hydrodyn., Val de Reuil, France

Fig. 1. Velocity distribution generated by souce-sink pair at boundary surface

Fig. 2. Wave patterns due to souce-sink pair top: wave pattern computed using Green function bottom: wave pattern reconstructed using Fourier-Kochin wave representation

Fig. 3. Wave elevations along four cuts at y=0, 0.06, 0.1, 0.5 for F=0.316