Verification of Fourier-Kochin representation of waves
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The purpose of this study is to present a verification of the Fourier-Kochin representation of waves
given in [1,2]. This representation expresses the waves generated by a given flow at a boundary
surface in terms of single Fourier integrals and spectrum functions that are defined by distributions
of elementary waves over the boundary surface. The Fourier-Kochin representation of waves is given
in [1,2] for three classes of free-surface flows: (i) diffraction-radiation of time-harmonic waves without
forward speed, (ii) steady ship waves, and (iii) time-harmonic ship waves (diffraction-radiation with
forward speed).

The Fourier-Kochin representation of waves is considered here for steady flows associated with
the linearized free-surface boundary condition w + F?9u/dz = 0 where F = U/\/gL is the Froude
number, and (u,v,w) = @ = U/U = Vi is the disturbance-flow velocity; here, ¢ = ®/(UL) is the
velocity potential associated with the velocity @ . The Fourier-Kochin representation of waves defines
the potential ¢" and the velocity @ " associated with the waves that are generated by a given velocity
distribution % at a boundary surface 3, which may intersect the mean free-surface plane z =0 along
the boundary curve I'. The boundary surface B UTI is divided into patches, i.e. EUT'= Zp - L,Uly,

associated with reference points (z, ¥, 2p) , with & = X /L, located near the centroids of the patches.

The wave potential ¢" and velocity ©" at a field point (&,m,¢) of the flow domain outside a
boundary surface £ UT" are given by the single Fourier integrals
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where Re stands for the real part. The functions a?(3) and k%(3) are defined as

ol = \/E/F K =v 4+ \/v24 2 with v =1/(2F?)
Here, k(53) stands for the value of the wavenumber k at the dispersion curves o = +a?(3), with

—oo < B < oo, associated with the dispersion relation F?a?—k = 0. The function C in the error
function erf is related to the curvature of the dispersion curves and is given by

C =1+|3/(F*%) — 2|/ (4 F?k?—3)3/2

We have C=2 for 3=0, where a?= k¢=1/F?, C =1 as §—+00, and C=1 at the inflexion points
defined by F2k? = 3/2 and F?( = +/3/2. The positive real constant o may be chosen as in (2].

The contribution S:,” of patch p to the wave-spectrum function SV(3) is given by
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Here, the unit vector 7 = (n®,n¥,n?) is normal to the boundary surface ¥ and points into the flow
region outside ¥, and the unit vectors ¢ = (t%,#¥,0) and 7 = (—t¥,#%,0) are tangent and normal to
the boundary curve I' in the mean free-surface plane z=0. The normal vector  points into the flow
region outside T, like the normal vector 7, and the tangent vector f is oriented clockwise (looking
down). The spectrum functions S*(3) and ST(3) are defined by distributions of elementary waves
over the boundary surface ¥ and the boundary curve I', respectively, with amplitudes given by the
normal components @ - 7i, i -7 and the tangential components @ x 7, @ - £ of the velocity @ at ¥ and T.



Thus, the Fourier-Kochin wave representation defines the wave potential qbw(f) and velocity i ()
at a field point E of the flow region outside a boundary surface ¥ UT in terms of the velocity distri-
bution @(Z) at the boundary surface ¥ and the boundary curve I'. This representation of the waves
generated by a flow at a boundary surface only involves the boundary velocity (%) ; i.e. the Fourier-
Kochin wave representation does not involve the potential ¢(Z) at the boundary surface ¥ UT, unlike
the classical boundary-integral representation that defines the potential in a potential-flow region in
terms of boundary-values of the potential ¢ and its normal derivative d¢/dn = i - 7i. The Fourier-
Kochin wave representation is based on several recent new fundamental results obtained within the
framework of the Fourier-Kochin theory [3,2] : (i) the boundary-integral representation, called velocity
representation, given in [1,2], (ii) the representation of the generic super Green function defined in
[4,5,2] , and (iii) the transformations of spectrum functions given in [3,1,2] . The flow generated by a
given flow at a boundary surface can be expressed as
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where ¢V @' is the wave component defined by the Fourier-Kochin wave representation, and P,
" is a local-flow component. The Rankine and Fourier-Kochin nearfield flow representation given in
(6] expresses the local component ¢, @ in terms of distributions of elementary Rankine singularities
and Fourier-Kochin distributions of elementary waves over the boundary surface ¥ and the boundary
curve I'. The local component ¢, 7% is not considered here.

For the purpose of verifying the foregoing Fourier-Kochin wave representation, the flow due to a
source-sink pair is considered here. Fig.1 shows the disturbance velocity (u,v,w) generated by a point
source and a point sink, of strength ¢ = Q/(UL?) = 0.001, located at (z,y,z) = (£0.5,0,—0.02)
over the lower half z < 0 of the ellipsoid z%/a?+ y?/b* + z%/c* with (a,b,c) = (0.55,0.05,0.1).
The velocity distribution (u,v,w) generated by the point source-sink pair is evaluated, for a Froude
number F' = 0.316, using integral representations of the Green function given in [7]. The upper
half of Fig.2 depicts the free-surface elevation, computed using integral representations of the Green
function, due to the source-sink pair. The lower half of Fig.2 depicts the free-surface elevation obtained
using the Fourier-Kochin wave representation and the velocity distribution generated by the source-
sink pair at the ellipsoidal boundary surface depicted in Fig.1. The free-surface elevations computed
using expressions for the Green function (upper half) and reconstructed using the Fourier-Kochin
wave representation (lower half) are not identical in the vicinity of the ellipsoidal boundary surface
because the local-flow component u” is ignored in the Fourier-Kochin wave representation. The wave
elevations shown in Fig.3 along the four longitudinal cuts y = 0, y = 0.06, ¥y = 0.1, y = 0.5 show that
the local component u in fact is only significant in the vicinity of the elliptical boundary curve.

The results depicted in Figs 1-3 provide a verification of the Fourier-Kochin representation of waves.
Furthermore, Fig.3 shows that the wave component is dominant even in the nearfield. Illustrative
practical applications of the Fourier-Kochin representation of waves are given in [8,9]. Specifically,
the Fourier-Kochin representation of steady ship waves is coupled with nearfield calculations based on
the Euler equations in [8] and is applied to the design of a wave cancellation multihull ship in [9].
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Fig. 1. Velocity distribution generated by souce-sink pair at boundary surface
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Fig. 2. Wave patterns due to souce-sink pair
top: wave pattern computed using Green function
bottom: wave pattern reconstructed using Fourier-Kochin wave representation
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Fig. 3. Wave elevations along four cuts at y=0, 0.06, 0.1, 0.5 for F=0.316



