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1 INTRODUCTION

Theoretical description of low-frequency oscillations (at the time-scale of minutes) of marine struc-

tures and deep-submersibles in a real stratified sea environment should take into account the

internal-wave radiation. Real smooth density profiles observed in nature are usually idealized

theoretically either as a two-fluid system with an interface or as a uniformly stratified fluid of

infinite extent. In the former case, one can apply the methods developed in the theory of surface

waves and consider the piecewise-potential flow with appropriate conditions at the interface. In

the latter case, the problem bears similarities with the theory of a thin wing in a flow of compress-

ible fluid. Indeed, the fundamental parameter of the problem Ω = ω/N (the ratio between the

frequency of the body oscillations ω and the buoyancy frequency N) physically plays the role of

the Froude number, while being formally analogous to the inverse Mach number. In the thin-wing

theory, the notion of affine similitude is used for derivation of the Prandtl-Glauert formula, which

relates the lift forces on the affinely-similar wing profiles in the subsonic flow of compressible and

incompressible fluids.

In the present paper we exploite a similar idea and obtain a simple formula, which gives a

relation between the tensors of the added mass coefficients of affinely-similar bodies oscillating in

homogeneous and uniformly stratified ideal fluids at Ω > 1 (elliptic problem). Since the problem

on the oscillations of a body in a uniformly stratified fluid can, in principle, be formulated in

time-domain in terms of the causal Green function, the solution of hyperbolic problem (Ω < 1)

in frequency-domain can be obtained by analytic continuation. The known solutions [1 - 4] for

hydrodynamic loads acting on the bodies of particular geometry can be obtained from the relations

discussed in the present paper. The rule of affine similitude formulated in the present paper is

confirmed by experiments with spheroids having different length-to-diameter ratios. Furthermore,

we focuss our attention on the oscillations of horizontal cylinders with the polygon shape of cross-

sections (rhomb and square) and demonstrate the existence of specific critical regimes that occur at

certain Ω∗, when the slope of the characteristic lines of the governing hyperbolic equation coincide

with the slope of the sides of the polygon profiles. The experimental technique for evaluation of

the frequency-dependent force coefficients is based on Fourier-analysis of the time-history of the

damped oscillation tests [5].

2 THEORETICAL ANALYSIS

Let us consider harmonical oscillations of a body with frequency ω in an inviscid uniformly

stratified Boussinesq fluid with constant Brunt-Vaisala frequency N(x3) = [(−g/ρ)dρ/dx3]
1/2,

where ρ(x3) is the density distribution over vertical coordinate of the Cartesian coordinate sys-
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tem (x1, x2, x3), and g is the gravity acceleration. Assuming that the body velocity v(1), ‘in-

ternal’ potential φ(1), fluid velocity u(1) and pressure p(1) can be all represented in the form

v(1)(x1, x2, x3, t) = V(1)(x1, x2, x3) exp(iωt), etc., the equation of fluid motion in terms of ‘internal’

potential [6] becomes
(
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)

Φ(1) = 0, (1)

where α = (Ω2−1)1/2/Ω, with Ω = ω/N . Hereinafter, superscript (1) is assigned to the variables of

Problem 1. Equation (1) may be of elliptic or hyperbolic type depending on the sign of α2. First,

we consider elliptic problem (α2 > 0). The fluid velocity in Problem 1 is given by

U(1) =
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The impermeability condition on the body surface S (1) given by F (1)(x1, x2, x3) = 0 is

U(1) · ∇(1)F (1) = V(1) · ∇(1)F (1),

where ∇(1) = (∂/∂x1, ∂/∂x2, ∂/∂x3). On affine transformation of the coordinate system

ζi = aixi, ai = (1, 1, α), (2)

the governing equation (1) in Problem 1 becomes the Laplace equation in Problem 2 (hereinafter,

superscript (2) denotes the variables of Problem 2)
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Φ(2) = 0. (3)

The impermeability condition on the body surface S (2) described by the function F (2)(ζ1, ζ2, ζ3) = 0

takes the form

∇(2)Φ(2) · ∇(2)F (2) = V(2) · ∇(2)F (2) (4)

where ∇(2) = (∂/∂ζ1, ∂/∂ζ2, ∂/∂ζ3), and the components of vector of the body velocity are V
(2)
i =

aiV
(1)
i .The components of the vector of hydrodynamic load y(1,2)(t) = Y(1,2) exp(iωt) in Problems

1 and 2 can be found by integrating pressure P (1,2) = −ρiωΦ(1,2) over the body surface S(1,2).

As evident from equations (3) and (4), Problem 2 is the classic problem on oscillations of a body

in a homogeneous ideal fluid. It is well-known [8] that the components of hydrodynamic loads in

Problem 2 can be expressed in terms of the added mass tensor. Similar concept can be introduced

for Problem 1. It can be shown [7] that the tensors of the added mass coefficients in Problems 1

and 2 are related as follows

K
(1)
ij = K

(2)
ij aiaj, (5)

with K
(1)
ij = m

(1)
ij /ρW (1) and K

(2)
ij = m

(2)
ij /ρW (2), where W (1) and W (2) are the volumes of bodies

surrounded by S(1) and S(2), respectively. Now let us suppose that for a certain family of bodies

oscillating in ideal homogeneous fluid we know the functions, representing the dependence of the

added mass coefficients on non-dimensional geometrical parameters K
(2)
ij = fij(e, q), where e =

b2/b1 and q = b3/b1 are the relations between the characteristic dimensions b1, b2, b3 of the bodies

along the directions ζ1, ζ2, ζ3. Then, the solution of Problem 1 for a body with given e0 and q0 can

be found from (5) as follows

K
(1)
ij (Ω) = fij(e0, q0α)aiaj . (6)
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At Ω < 0 equation (1) is of hyperbolic type (α2 < 0). The characteristic feature of the hyperbolic

problem is radiation of internal waves by the oscillating body. The solution of the hyperbolic

problem can be obtained by analytic continuation in frequency. The analytic continuation for α

is −iη, where η = (1 − Ω2)1/2/Ω is the real-value parameter. The coefficients ai introduced in (2)

should be replaced by γi = (1, 1,−iη). Accordingly, expression (6) becomes

K
(1)
ij (Ω) = fij(e0,−q0iη)γiγj .

The functions fij(e, q) for different bodies can be found in appropriate handbooks (see, for example,

[9]). In particular, the functions fij(e, q) for spheroids and elliptic cylinders yield the solutions [1

- 4], obtained by different approaches. Note that in 2D case the functions fij are the functions

of a single argument q, what raises some important consequences for low-frequency asymptotic of

the force coefficients and for application of the Kramers-Kronig relations [10] relating the real and

imaginary parts of K
(1)
ij (Ω). We use the standard decomposition of the complex force coefficients

as is customary in naval hydrodynamics [8], i.e. m
(1)
ij = µij − iλij/ω, where µij and λij are the

added masses and damping coefficients, respectively. The corresponding non-dimensional values

are introduced as Cµ
ij = <[K

(1)
ij ] = µij/ρW (1) and Cλ

ij = Ω=[K
(1)
ij ] = λij/ρNW (1). In 2D case, the

coefficients are defined for cylinders of unit length and W (1) is the cross-sectional area.

For a set of affinely-similar bodies with different q0 and fixed e0, we can formulate the rule of

affine similitude that requires

K
(1)
ij /(aiaj) = idem if q2

0(Ω
2 − 1)/Ω2 = q2

0α
2 = idem.

3 EXPERIMENTS

The experimental technique used in the present study is essentially similar to the one described

in [5]. The frequency-dependent force coefficients Cµ
11(Ω) and Cλ

11(Ω) for a horizontally oscillating

body are evaluated from Fourier-transforms of the impulse response function of the body attached to

the lower end of a pendulum having variable restoring moment. Experiments were performed with

2D (cylinders with different shapes of cross-section) and 3D (spheroids with different q0) bodies.

The theoretical and experimental results are exemplified in figure 1a, b representing the added mass

and damping coefficients of rhomb and square cylinders oscillating in a uniformly stratified fluid.

For the data obtained in homogeneous fluid (line 4 in figure 1b) the normalization of λ11 by the

value ρ0NW (1), which took place in the stratified-fluid experiments, has purely formal sense. The

limiting value Cµ
11(∞) ≈ 1.19 is common both for the rhomb and square profiles. Here, the rhomb

is a square with vertical diagonal. Note that for Ω∗ = 1/
√

2 the force coefficients of the rhomb

profile undergo a drastic change. At the frequency Ω∗ the slope of the characteristic lines of the

governing hyperbolic equation (that is equal to the slope of the group-velocity vector of internal

waves) coincides with the slope of the sides of the rhomb.
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a) b)

Figure 1: Added mass coefficient Cµ
11 a) and damping coefficient Cλ

11 b) versus frequency Ω (lines

1, 2 - theory, symbols 1, 2 - experimental points for rhomb and square, respectively, line 3 - theory

[2] for a circular cylinder, line 4 - approximation of experimental data for the damping coefficients

of the rhomb and square cylinders in homogeneous fluid)
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