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1. Introduction

In this paper we describe a method for determining the sloshing modes in a uniform cylin-
drical tank containing multiple vertical circular cylinders. We use the fact that it is possible to
exploit the circular geometry of the tank and each of the elements within the tank to express
the solution of the problem exactly. The key ingredient that permits this progress is Graf’s
addition theorem for Bessel functions which has been applied to many problems involving mul-
tiple circular cylinders. From these, most relevant to the present problem is the application of
Graf’s theorem used by Linton & Evans (1990) to study the interaction of a parallel crested
incident wave field with an arbitrary array of uniform vertical cylinders. The solution of our
problem is expressed in terms of an infinite system of equations whose numerical solution may
be computed accurately and efficiently.

The problem has previously been considered by Drake (1999) who used a boundary element
method to solve the integral equation derived from an application of Green’s identity. Drake
(1999) draws his motivation for studying the problem from the oil industry in which certain
oil platforms are supported by a large circular column filled with water and containing a large
number of vertical circular pipes. Such oil platforms are known to experience resonant motions
(see Drake (1999) for further details) some of which are attributed to the sloshing modes of the
water inside the supporting column. The problem under consideration also has relevance to
the design of heat exchangers, such as those found in the nuclear industry. The equations that
govern the surface elevation in the fluid also apply, under the assumptions of linear acoustic
theory, to the pressure field inside a circular guide containing multiple pipes. In the design of
heat exchangers involving large arrays of closely-bundled pipes it is of some importance to de-
termine the acoustic resonant frequencies that are exhibited by the configuration and to ensure
that they do not coincide with the natural frequencies of any of the individual components.

Advantage is taken of the computational efficiency of the present method to investigate the
effect of large evenly distributed arrays of cylinders occupying the tank and to compare these
exact results with those from an approximate homogenisation theory also described in Drake
(1999). It is shown that the approximation is remarkably accurate, even for tightly packed
arrays of cylinders.

2. Formulation and solution

The cylindrical tank and each of the internal cylinders extend uniformly throughout the
depth of the fluid, 0 < z < h, where z = h represents the undisturbed free surface of the fluid
and z = 0 the bottom of the tank. A cross-section through the tank is sketched for a typical
configuration in figure 1. The origin, O, is placed at the centre of the cylindrical tank and from
which both Cartesian (x,y) and polar coordinates, (rg,6y) are employed with z = rcos by,
y =rosinfy. The N internal cylinders are centred at (z;,y;) and have radius a;, j =1,...,N.
Anticipating later notation we also attribute polar representations of the centres of each of the
cylinders with respect to the origin by writing z; = Ry; cos o, y; = Ry;sin ;. In addition
to the coordinate system (r, 6p), local polar coordinates (rj, ;) are introduced, based on the
centre of the jth internal cylinder. The relative distance and angle between the jth and kth
cylinder are defined respectively by

Rjk = [(1‘] — $k)2 + (yj - yk)z]% and U = tan‘l <M> , (1)
Tk — I
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Figure 1: The coordinate system for the circular tank containing multiple cylinders.

for 1 <j,k < N. Note that Ry; = Rj; and ay; = o + 7, and this definition may be extended
to give meaning to Rjy and ;. See figure 1 for an overview of all these definitions.

Assuming a time-harmonic dependence of angular frequency w, and variation with the
depth coordinate proportional to cosh kz, where k satisfies w?/g = ktanhkh (g graviational
acceleration), the two-dimensional velocity potential, ¢, satisfies

(V2 +k%)p =0, in the fluid domain, D (2)
with the no flow conditions,
0
a—sz, onr;=a;,j=0,1,...,N. (3)
j

Clearly, if ¢ satisfies (2) and (3) then so does ¢, its complex conjugate. Thus we may consider
¢ to be real without loss of generality. However, we prefer to continue with ¢ defined as a
complex function as this reduces the mathematical detail. We do so in the knowledge that
taking the real part of ¢ at any stage also represents a solution of the problem.

Using the linearity of the governing equations we decompose the total potential into the
fundamental potential for the cylindrical tank in the absence of internal cylinders, ¢q, plus a
sum of ‘scattering’ potentials, ¢} associated with each of the N internal cylinders and which
describe locally outgoing waves. This is done by writing

¢(x,y) = ¢0(T0790) + Z¢;(rj79j) (4)

where

o0 o0

bo(r0,60) = Z all W(Erg)e™® . and ¢3(r;, 0 Z al H,(kr;)e™ (5)

n=—00 n=-—00



where J,(x) and H,(z) = J,(x) 4+ iY,(z) are the Bessel function and the Hankel function of
the first kind, respectively. Also the factors

70 = Hy(kao) [T(kao) and  Z9) = Ji(ka))/H,(kay),  j=1,...,N

are introduced for later convenience. The coefficients agj), j=0,1,..., N appearing in (5) are
to be determined and this will be done by the satisfaction of the cylinder boundary conditions,
(3). In order to carry out this task two separate applications of Graf’s addition theorem are
employed: one is used to satisfy (3) for j = 1,..., N and the other for the same boundary
condition with j = 0 — i.e. on the outer cylinder ry = a,.

The system of equations that determine the sloshing modes turn out to be given by

all) + Z Jnm (K Rop)e' ™~ mawz Z D23 Hy o (K Ry )" =0 (6)
n=—o00 1 n=-o00
T2

formeZ,k=1,...,N and a corresponding equation for k£ = 0,

agy +Z S A2, (kRip) 0 =, (7)

7j=1 n=—00

for m € Z.

It is a trivial matter to confirm from the system of equations above that for a single concen-
tric cylinder in the tank, the sloshing modes are determined by the roots of J;, (ka,)Y, (kag) —
J! (kao)Y, (kay) =0, m =0,1,... as expected.

In a similar manner to Linton & Evans (1990), we are also able to reintroduce the systems
of equations in (6) and (7) into local expressions for the potential to obtain the simplified
expressions

d)(?”k, Qk) = Z aglk) [ZT(Lk)Hn(ka) - Jn(lﬂ“k)] einﬂk, for T < Rjk, \V/] (8)
and .
B(ro, o) = Z al” [Z0 1, (kro) — H,(kro)] e™%, for o > Rjo, Vj 9)

3. Results

The solution of the sloshing problem is determined by the non-trivial solutions of the ho-
mogeneous system of equations given by (6) and (7) combined. Numerical solutions of these
equations are found by truncating the infinite sums to sums between —A and M. Numerical
experimentation determines appropriate values of M for a specified accuracy, and M = 5 was
found to be sufficient for five decimal places accuracy in most cases. The frequency of sloshing
is determined in terms of the non-dimensional parameter kay.

Of particular interest is the effect on sloshing frequencies due to a large number of evenly
distributed cylinders. The method presented here is capable of efficiently computing accurate
results for N of the order of 100. However, for such large numbers of cylinders it is reason-
able to appeal to homogenisation techniques to argue that the effect of the large number of
discrete cylinders is approximately equivalent to a new homogeneous medium with an altered
wavenumber.



Just such an approximation appears in Drake (1999) for a multitude of evenly spaced cylin-
ders of ‘small’ cross-section and results in the simple relation

k>~ (1 —o0)ky, where  J(koag) =0, n=0,1,... (10)

and o (assumed small) is the proportion of the cross-sectional area of the tank occupied by
the cylinders. It can be seen from (10) that the wavenumber in a medium occupied by many
cylinders is reduced by a factor of (1 — ¢)'/? from the wavenumber for sloshing tank in the
absence of internal cylinders.

In figure 2 curves using the homogenisation theory defined by (10) are plotted with values
of kag computed for arrays of N = 24,44 and 96 cylinders and show remarkable agreement
even for large cylinders. The corresponding modal amplitudes for two extreme cases appearing
in figure 2 are shown in figure 3.
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Figure 2: Variation of kay for sloshing against o predicted by the approximation (10). Mode
numbers are labelled against curves. Data computed for rectangular arrays of cylinders are
shown in symbols for N = 24 (circles), N = 44 (crosses) and N = 96 (boxes).

Figure 3: Contour plots of the amplitude of the sloshing modes: (a) N = 24, 0 = 0.05, mode
n =1, kay = 1.78445; (b) N =96, 0 = 0.35, mode n = 0, kag = 3.07707.
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