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SUMMARY

We describe a theoretical approach to a distorted plate penetrating calm water surface as a flow model of the
water impact in rough seas. Further simplifications are employed that the structure of ship is modeled by a
tandem mass and spring system and a sequence of circular hollows is used as a bottom shape of the body instead
of the surface shape of short crested waves. The theory shows good agreement with a free fall experiment.
Another result shows that the influence of the trapped air is big at the small-scale water impact.

1.INTRODUCTION

It is well known that the impact pressure due to the
water impact of the flat plate is infinite in the Wag-
ner’s theory[1]. However, because of several cushion-
ing effects, the impact pressure acting on a ship bot-
tom in the rough sea is finite. The cushioning effects
considered so far are the compressibility of the water,
the air trapping, and the three-dimensional effect.

Another important issue 1s the elasticity of the hull
and/or the surface plate. When the hull hits the sur-
face of the water the energy of motion of the hull
changes to the energy of the water and the strain en-
ergy of the structure. The strain energy by the water
impact varies with the duration of impact, because
the hull structure responds as a mass and spring sys-
tem. When the water impact acts upon the hull, the
hull structure responds as a mass and spring system
with two degrees of freedom. There is no influence
of the elasticity on the impact phenomena when the
duration of impact approaches to zero. This is the
case that the flat bottom hits the flat water-surface
without air trapping and the response is regarded as
an 1mpulsive response. When the duration of impact
is the order of the natural period of local structure,
the strain energy decreases as the duration increases.
This case can be seen in reality, since the water sur-
face of the realistic sea is not flat and the air trapping
is expected. However, the trapped air makes problem
complicated, since these effects act as other mass and
spring systems.

The estimation of the trapped air has another dif-
ficulty. When a body with very small dead-rise angle
approaches to the flat water-surface, the air, which
is pushed ahead of the body can’t escape completely
from the gap between the bottom and the water sur-
face and, as a result, a cavity filled with the trapped
air may be formed. However, it is often the case that
the process of the cavity formation i1s unstable and
depends very much on small variation of parameters
such as attack angle, fine geometry of the bottom near
the edge and so on. This fact makes theoretical and
also experimental approach of the cushioning effect
difficult. Thus, the total system is complicated and
this complication makes understanding of the prob-

lem difficult.

However, it would be possible to employ some as-
sumptions to make the problem simpler, if we observe
the realistic sea. When a large ship experiences wa-
ter impact, the condition of sea must be rough. High
swells induce large ship motions and, as a result, slam-
ming occurs at the bow of the ship. In this case, the
surface of the sea is not smooth, since short crested
wind-waves are added on the swells. It is apparent
that this rough surface guarantees the cavity forma-
tion under the ship bottom in advance. In addition,
the linearized formulation claims that the deforma-
tion of water surface is identical with the distortion
of the bottom plate of a ship. This is a great advan-
tage to solve the water impact problem in realistic
sea, because we can use the combination of distorted
body and flat water-surface instead of flat body and
distorted water-surface.

In this paper, we describe a theoretical approach
to a distorted plate penetrating calm water surface
as a flow model of the above mentioned water impact
in rough seas. In addition, we employ further sim-
plifications that the structure of ship is modeled by
a tandem mass and spring system and a sequence of
circular hollows 1s used as a bottom shape of the body
instead of the surface shape of short crested waves.

2. FORMULATION

The linear theory is based on the matched asymptotic
expansion method and the perturbation parameter is
preferred to be the ratio between the vertical scale
of the distortion of the plate and the horizontal scale
of 1it. Although the overall problem is composed of
the outer problem and the inner problem, only the
outer problem is considered here, because the impact
force is not affected by the inner solution. We use the
following non-dimensional space and time co-ordinate.
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where R 1s radios of the circular hollow, H is depth
of the hollow and V} is initial drop-speed of the disk.
The linearization is performed by assuming H/R =
e << L.



The equation of motion of a tandem mass and
spring system is represented as a system of linear dif-
ferential equations.
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This system is falling onto the water surface with a
constant speed V{). z, denotes the vertical displace-
ment of the mass m,, relative to the co-ordinate fixed
on this system, and the positive sign means vertically
upward. Where, all variables are non-dimensionalized
as follows:
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K, 1s the spring constant, M, is the mass, p,, 1s the
density of water and F' is the impact force due to
water pressure and trapped-air pressure.

We define the non-dimensional drop speed v(t) =
V(t)/ Vo of the mass ms onto the water surface, which
is initially calm. v(¢) has the following relation with
zZ9.
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The mass ms 1s assumed to be a circular disk whose
bottom surface z = b(x, y) is distorted. In addition, it
1s assumed that the disk bottom has a circular hollow
whose shape is represented by an elementary function
for making the problem simpler.

blz,y) = (2 +y* — 1)~ (6)

The impact force acting on the disk is obtained by
solving an initial-boundary value problem, which is
known as Wagner’s theory. It is well known that this
problem has a singularity at the inter section between
the bottom surface and the water surface. Therefore,
we employ the displacement potential, which has no
singularity at the inter section. The displacement po-
tential ¢ 1s defined as follows:
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where ¢ i1s the velocity potential. The boundary con-
ditions for the displacement potential are obtained by
integrating Wagner’s boundary conditions respect to
time.
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The functions ¢(t) and Z(t) are defined as follows:
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where 2. denotes the projection of the cavity on the
plane z = 0 and €; denotes the projection of the
outside free surface on the plane z = 0. Further as-
sumption is that the air pressure in the cavity is taken
in the Tate form.
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where n is a constant which is depend on the gas
properties and in case of the air n = 1.4. The function
v(t) is the non-dimensional cavity volume, p, is the
density of air and ¢y is sound velocity of the air.

The initial-boundary value problem for the dis-
placement potential is solved by means of the bound-
ary element method in space and the Runge-Kutta
method in time. It is apparent from the definition
that the fluid pressure is obtained by differentiat-
ing the displacement potential twice respect to time.
However, differential operation makes the numerical
precision worse. Thus, a new scheme for estimation
of the impact force is considered in which no differ-
ential operation is appeared, although one differential
operation is required when the pressure distribution
is needed.

Once we solve the initial-boundary problem for the
displacement potential, the intersection between the
body surface and the free surface is known. Thus,
we define a boundary value problem for the velocity
potential.

Vip = 0 for z <0, (16)
d

¢ = _d—z for (z,y) € Q, (17)

g—f = —U(t) f07° ($ay) € Qb’ (18)

6 = 0 for (z,y) € Qp, (19

where 0 denotes the projection of the wetted part of
the body on the plane z = 0. The impact force f is
obtained by integrating the linear pressure distribu-
tion on the wetted body surface and the air pressure
in the cavity.
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After some manipulation, the right-hand side of (20)
is transformed.
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Figure 1: Comparison between theoretical and ex-
perimental result of the air pressure in the cavity:f =

17.0,Vy = 0.922m/s, R = 0.07m and M = 3.38kg

where /22 4+ y? = a(t) is the intersection between the
body surface and the free surface in the cavity. If we
define the normalized velocity potential ¢y = ¢/v()
and substituting (21) into (3), v(¢) is obtained.
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where X (t) has the following relation with z; and zs.
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The boundary value problem for the normalized ve-
locity potential ¢ is easily solved by means of the
boundary element method.

3. PROBLEM OF THE WAGNER SCHEME

If you take k1 = k2 = 0 and add the gravity as an
external force, the present formulation represents the
free fall motion of the mass ms. Fig.1 shows the com-
parison between theoretical and experimental result of
the air pressure in the cavity. There is a small fluctu-
ation on the time history of experimental data. This
fluctuation is supposed to be due to vibration of the
pressure gauge, since the natural period of pressure
gage 1s almost as same as period of the fluctuation.
Except for this point, the agreement between theory
and experiment is good up to the time ¢ = {p. How-
ever, a problem happens at the time ¢ = ¢t that the
free surface in the cavity can’t be attached at the in-
tersection, then the Wagner scheme fails. The same
situation has already been reported by Korobkin [2]
in the case of two-dimensional water impact problem
with attached cavity. Following his theory, we inves-
tigate the detail of this phenomenon.

If the drop speed of the body is a constant V{, the
non-dimensional elevation of the outer free surface is
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and of the mner free surface is
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where ¢() denotes the intersection point between the
outer free surface and the body surface, and function
yp(,t) = (22 —1)? —t denotes the instantaneous body
shape. D(t) is evaluated from the asymptotic form
of vertical velocity far from the body. The vertical
displacements of both the outer free surface and the
inner one are bounded if
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where A = (¢? — a?)/2 and B = (¢? + a?)/2. These

two equation leads cubic equation of A%:
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It is found that if D > 4(t/3)3/? A® has no positive
root. This corresponds to the time ¢t = tp. After this
instance, (26) and (27) are not able to satisfied simul-
taneously. Thus we must weaken the unbounded con-
dition at the inter section point in the cavity z = a.
It is noted that even if the elevation of the free surface
is not bounded at x = a estimation of the cavity vol-
ume is still possible, because the singularity at « = a
is proportional to 1/y/a — 2. Provably, in this case,
we need to consider new inner solution, which may
satisfy the full nonlinear free surface condition. How-
ever, we don’t discuss about this further.

Two artificial conditions are tested here, instead of
the bounded condition at the intersection. The first
one is rather simple that the intersection point z = a
1s fixed after ¢ = tr. The second one is that the
intersection point # = a is determined so that the
singularity at the intersection is minimized. It seems
that the second condition is more reasonable than the
first one. However, results show that the difference is
not big. Thus, we decide that the first condition is
used in the three-dimensional analysis.

4. SCALE EFFECT DUE TO TRAPPED
AIR

It is very important to know the scale-effect between
the tank test model and the full-scale ship. Thus, the
investigation about the scale effect due to elasticity
and the trapped air is focused on. We take
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Figure 2: Drop speed of the mass mq
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Figure 3: Impulse acting on the mass ms.

Full scale Model scale
Vo 5.0 m/s 0.71 m/s
M, 4.0 x 107 kg 320.0 kg
M, 4.0 x 10* kg 0.32 kg
Ki 3.0x10®N/m 1.2 x 10° N/m
Ky 1.2 x10® N/m 7.8 x 10* N/m.
T 2.30 sec. 0.325 sec.
Ty 0.115 sec. 0.0162 sec.
8 1.13 56.6

This corresponds to about 200m-long bulk-carrier in
full scale and the model is 1/50 scale. The model
values are according to Froude’s law, and the spring
constants are determined so that the natural period of
the system in the air keeps Froude’s law. T} and T3
denote the natural period of the system. The non-
dimensional natural period t; and t5; are 8.20 and
0.409 respectively.

The drop speed of the mass ms is shown in Fig.2.
The drop speed in the model scale is rapidly reduced
after the impact compared with that in the full scale.
The drop speed becomes zero at ¢ = 0.034. There-
fore, the curve of model scale mass-spring system is
vanished at this time in all other figures. The impulse
acting on the mass ma i1s shown in Fig.2. Where, the
impulse 1 is

t
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If you make k, = oo, the speed of mass would not be
changed. This case is shown as 'Const. Speed’ in the
figure. It is apparent that the impulse in model scale
is much bigger than that in the full scale. This makes
speed reduction quicker. It is noted that this differ-
ence is due to trapped air. Interesting point is that
the trapped air makes impulse larger. This means
that the cushioning effect is obtained from the dis-
tortion of the water surface but the trapped air does
not work as a cushion. The elasticity gives almost the
same cushioning effect both in the full scale and the
model scale. The same tendency is found in the time
histories of the air pressure in the cavity, which are
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Figure 4: Air pressure in the cavity.

shown in Fig.4.
5. CONCLUSION

We try to describe the complicated ship-slamming
problem by a simple mathematical model. In the case
of free-fall motion, this model is in good agreement
with an experimental result. Other results by this
model show that the influence of the trapped air is
big at the small-scale water impact.
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