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1. Introduction

Several methods can be used to handle the potential flow due to steady forward motion of a ship in finite water depth. A
linear method based on thin ship theory with the Green function of steady motion in finite constant water depth and a
nonlinear theory based on Boussinesq-type equations are discussed here. The thin ship theory is robust in dealing with
wash and wave resistance while nonlinearities, unsteady effects, a general sea bottom topography and solitary waves
generated by a ship in a channel near critical depth Froude number can be described by nonlinear Boussinesq-type
equations.

2. Green function of steady motion in finite constant water depth

The Green function G of steady motion in finite constant water depth satisfying the classical linear free surface condition
can be expressed in alternative ways. We have found the following decomposition to be most convenient, i.e
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Here the source point is at ),0,0( ζ  and the field point is at ),,( zyx  where z is positive upwards with z=0 in the mean

free surface and x is in direction of forward motion. Further 2222 )( ζ−++= zyxr , 2222
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if 1>hF  and 0K  is the positive root of 0tanh 0
2

0 =− KFK h  if 1<hF . ghUFh /=  is the depth Froude number, h is the

water depth and )/)/nharccos((ta 5.0
0 hFkk=θ . Length dimensions are nondimensionalized by h. H(x) is the Heaviside

step function. ε  is a small positive number proportional to the Rayleigh viscosity. The latter takes care of the radiation
condition. i  is the complex unit and Re means the real part. Further ),( kf θ  removes the singularity at 0=k . This
decomposition of the Green function is similar as Newman (1987) used for infinite water depth. The numerical
calculation of the set of Rankine singularities and the downstream wave part (the single integral in Eq. (1)) is fast in
general while the calculation of the double integral in Eq. (1) is slow. The double integral does not influence wave
resistance and the far field wash, but is important for trim and sinkage predictions. The sequence of integration matters in
the double integral. At subcritical speeds, we must first integrate with respect to k  while at supercritical speeds, we must
first integrate with respect to θ . At subcritical speeds, the integration with respect to k  is divided into two parts. One is
integration from 0 to a small value a . The other is integration from a  to ∞ . No singularity exists between 0 and a. Here
we select kkf 2cosh),( =θ  for ak <  and 0),( =kf θ  for ak ≥ . By this selection, the singularity at 0=k  is removed and
the integration from 0 to a  behaves like Rlog  for large R . Here 2222 )1( yFxR h−+= . The integration with respect to k
from a  to ∞  can be taken as a principle value integral plus a residue contribution. This integration domain is divided
into subelements. A Taylor expansion around the midpoint of the subelement is made separately for the denominator and
the nonoscillatory part of the numerator of the integrand. If the singularity of the integrand is within the subelement, the
singularity has to be at the midpoint of the subelement. The integration from a large k  to infinity can be solved by
asymptotic expansion of the integrand at large k . Another way to deal with the integration from k=a to ∞  is to take k
as a complex variable and use Cauchy’s theorem to find the steepest descent path. This is the most efficient method. At
supercritical speeds, we can either use the principle value integral plus a residue contribution when integrating with
respect to θ  or take θ  as a complex variable and use Cauchy’s theorem to find several alternative integration paths.
However, the alternative integration paths are not always better than the original path. We have also alternatively chosen
ε  as a small positive value. Here, we select kkf cosh),( =θ . Using this method, the singularity along the original



integration path is avoided and it is unnecessary to consider the sequence of integration. However, since ε  should not be
finite, the accuracy cannot be guaranteed. Table 1 compares the double integral by different methods at subcritical speed
while Table 2 shows similar comparisons of the x -derivative of the double integral at supercritical speed. The results by
principle value integral plus a residue contribution and by using Cauchy’s Theorem agree well. At subcritical speed, a
constant difference exists between the results by keeping ε  a small positive value and the results by other methods. This
is due to the different choices of ),( kf θ  which have no influence on the derived physical variables like fluid velocity.

1 Method x=0 x=0.1 x=0.3 x=0.5 x=1.0
2 Rayleigh’s viscosity 1.323445 -0.661246 -2.191790 -3.105782 -4.760434
3 P.V.integral+Residue 13.917151 11.938006 10.418638 9.515693 7.887826
4 Cauchy’s Theorem 13.917142 11.937978 10.418633 9.515693 7.887816
5 Line 4 – Line 2 12.593697 12.599225 12.610423 12.621475 12.648250
6 Line 3 – Line 4 0.000009 0.000028 0.000005 0.000000 0.000010

Table 1: The double integral in Eq. (1) calculated by different methods at subcritical speeds.
( 001.0,1.0,1.0,0,0,9.0 ==−==== εζ azyFh )

1 Method x=0 x=0.1 x=0.3 x=0.5 x=1.0
2 Rayleigh’s viscosity -9.571250 -3.189684 -0.854762 -0.460710 -0.181828
3 P.V.integral+Residue -9.579987 -3.195378 -0.858562 -0.463533 -0.183305
4 Line 3 – Line 2 -0.008737 -0.005694 -0.003800 -0.002823 -0.001477

Table 2: The x-derivative of the double integral in Eq. (1) by different methods at supercritical speeds.
 ( 001.0,1.0,1.0,0,0,5.1 ==−==== εζ azyFh )

The integrand of the downstream wave part can be highly oscillatory. We have used the method of repeated averaging of
partial sums (Dahlquist et al 1974) to accelerate the convergence of the integral. This method is very efficient when the
integrand is highly oscillatory and slowly decaying for large k. The essential steps of this method are to find the zeros of
the integrand, change the integral into an alternating series and do the repeated averaging of the partial sums. Each term
in the series is the integral between two successive zeros of the integrand. 10 terms are normally sufficient to have an
accuracy of 610− . If no stationary phase exists for the integrand, this method can be applied directly while if stationary
phases exist, this method can only be applied from the k corresponding to the largest stationary phase value.

3. Boussinesq-type equations

The extended Boussinesq-type equations by Nwogu (1993) and the Predictor-Corrector model by Wei and Kirby (1995)
are used. The Boussinesq-type equations require that a local measure of the wave length is large relative to the water
depth. If 2-D regular waves are considered, the phase and group velocities are predicted with a relative error <5% when
h/L<0.4. Here L is wave length. This means that the wave number kh<2.51. We have used the downstream wave part of
the Green function in combination with the 2-D regular wave criterion to study the applicability of the theory for our
problem. The wave numbers for the transverse wave system are almost the same at a given depth Froude number. This
requires  that 716.0>hF . The wave numbers for the divergent wave system change substantially as a function of angular
position |)/arctan(| xy=α  of the field point. When 0→α , ∞→k . This means that Boussinesq-type equations are not

valid at small α  and requires for instance that 05.15>α  at 2.1=hF . When considering the source distribution
representing a ship, the previous criteria for a single source is nonconservative. Another limitation is how the body
boundary condition is introduced into the problem. Two models have been used. One is a hybrid method using the linear
steady thin ship theory in an inner domain near the ship and using horizontal velocities and free surface elevations along
a longitudinal cut at some distance away from the ship as the input to the Boussinesq-type equations. The other is based
on slender body theory in shallow water by Tuck (1966). The boundary condition at the centreplane is chosen as the
outer expansion of the inner solution. However, both of them have limitations.  Using linear thin ship theory to represent
the ship is not compatible with using nonlinear free surface condition in the Boussinesq-type equations. Moreover, the
flow must be steady and the reflection from for instance channel walls cannot be handled. Using Tuck’s slender body
theory in shallow water implies a rigid wall free surface condition in the near field. The length Froude number must then
be small or moderate.



A ship travelling in an open area of constant finite water depth is first studied. Steady conditions are considered.
Wigley’s parabolic hulls with same length L and draft T (L/T=16) but different beam B are examined We choose h/T=1.6
and 2.1=hF .  Fig 1 shows wave elevation at two longitudinal cuts at y=L and y=1.5L by linear thin ship theory and
using Tuck (1966)’s theory as body boundary condition in nonlinear and linear Boussinesq-type equations for different
L/B. The two linear theories agree well at the first and second wave crests and the first wave trough after the ship bow.
One reason to the difference after the second wave crest may be that the length Froude number is large (0.38) and is
inconsistent with Tuck’s assumptions. Another reason may be that the angular position α  of some of the calculated area
is less than 05.15 , i. e that the wave lengths are inconsistent with the Boussinesq-type equations. The nonlinear theory
causes higher wave crest and smaller wave trough relative to linear theory. Some phase differences exist between the
linear and nonlinear theories. The nonlinear results converge to the results by linear Boussinesq-type equations when

0/ →LB . We note that at L/B=5, the difference between linear and nonlinear theories is large and there are waves
ahead of the ship. We have also used the thin ship theory to calculate velocities and the free surface elevations along a
longitudinal cut 0.5L away from the ship as input to the Boussinesq-type equations and calculated the wave elevation at
y=L and y=1.5L. Here, only the downstream wave part of the Green function is used. The two linear theories are now in
good agreement. This implies that it is the body boundary condition that is the major error source.
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Figure 1: The convergence of nonlinear Boussinesq-type equations to linear theory as a function of L/B for Wigley
hulls. 2.1=hF . 6.1/ =Th . The body boundary condition is represented by Tuck’s slender body theory in

shallow water. The ship is located at y=0 and –1<x<0.

The solitary waves generated by a ship travelling along the center line of a channel with constant rectangular cross-
section near critical depth Froude number are studied. Reflective boundary conditions at the channel walls and absorbing
boundary conditions at some distance before and after the ship are imposed. A Series 60 ship with 6.0=bC  is studied for
different hF  and channel width W. The ship starts from rest and obtains the required speed instantaneously. Since we
want to study the time required for the solitary waves to generate, we compare the amplitudes of the solitary waves at the
time when the first crest leaves the bow. In a narrow channel (W/L<~4), at that time, the solitary wave crests are almost
orthogonal to the channel wall and the wave elevation is almost the same along the crest, i.e the associated flow is nearly
2-D in a longitudinal cross-section. The larger W/L is, the more 3-D the associated flow is. In such cases, we use the
average wave amplitude across the channel. Fig 2 shows the amplitudes of the first crest of the solitary waves and the
time required for it to generate. Generally speaking, the amplitudes of the solitary waves increase with increasing depth
Froude number at a given channel width and decrease with increasing channel width for a given depth Froude number.
The time required for the solitary waves to form increases with increasing depth Froude number at a given channel width
and increases with increasing channel width at a given depth Froude number. At a given supercritical depth Froude
number, the solitary waves cannot be generated if the channel width is too large. For example, if 25.1=hF , the solitary
waves cannot be generated if W/L>~4. One reason is that at supercritical speeds, the group velocity of the solitary waves
which depends on the wave amplitude must be larger than the ship speed. Fig 3 shows the lower limit of the amplitudes
by using 2-D solitary wave with single crest. Fig 3 can in combination with that the amplitude decreases with increasing
W/L be used qualitatively to explain why there is a limiting value W/L for solitary waves to be generated at supercritical
Froude number. For instance, it is required from Fig 3 that >La /ζ 0.048 at 2.1=hF  and >La /ζ 0.062 at 25.1=hF .



This is consistent with the results in Fig 2(a). When W/L>~4 and 25.1=hF , solitary waves cannot be generated while
solitary waves still exist for W/L=8 and 2.1=hF . The cases at critical speed and subcritical speeds are different. The
amplitudes seem to decrease to a small finite value and the generation time of the solitary waves seems to increase to a
large finite value at large channel width. However, the amplitudes at large channel width are small and the channel wall
plays an important role in the formation of the solitary waves. The theoretical breaking limit (Soulsby 1997) of the
solitary waves is also shown in Fig 2(a). The amplitudes of the solitary waves for 2.1=hF and 1.25 with W/L<~5 are
larger than this breaking limit. When they propagate, numerical problems exist which in an indirect way is likely to be
associated with the physical fact that these waves have amplitudes larger than the breaking limit of solitary waves
proposed by Soulsby.
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Figure 2: The influence of channel width W on the amplitudes aζ  and the generation time t of the first solitary
waves at different depth Froude number hF . Series 60 hull with 6.0=bC . 0.2/ =Th .

The effect of changing the ship beam has also been studied. The ship lengths and drafts are the same as a Series 60 with
6.0=bC . We choose W/L=2 and 2.1=hF . The solitary wave amplitudes for different beam values are almost the same

but the generation time varies a lot. If the beam is the same as the original beam of the Series 60 ship, the
nondimensional generation time Ut/L=15.625 while if the beam is equal to 0.70 times the original beam, then
Ut/L=51.25. The relative difference between the amplitudes is only ~2%. If the beam is less than ~0.65 times the original
beam, no solitary waves can be generated for 2.1=hF .
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I'm particularly interested in your way to evaluate the finite-depth G.F. by taking a 
small but finite value of ε representing Rayleigh coefficient.  In reality, ε is in fact not 
zero but how big is it?. Could you design an experimental test to determine it?.  
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(If Available) 

 

 
In this paper, ε is used to determine the integration path over the singularity. In the 
limiting case, it should go to zero mathematically. 
Since ε is a small value, it is difficult to determine it through experiments. The 
influence of other effects like free surface tension, viscous effects of basin walls may 
be at the same order as ε. 
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I would like to congratulate the authors on an extremely interesting piece of work. I 
have one small query with regard to the use of the repeated averaging method, since I 
have used this in a related problem with only partial success. 
 
 In the reference quoted (Dahlquist et. al. section 3.2.1), it is stated that for alternating 
series "if the  absolute value of the jth term (considered as a function of j) has a kth 
derivative which approaches zero monotonically for j>n0, then every other value of in 
column Mk is larger than the sum and every other value is smaller". (The column Mk 
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It is not immediately obvious to me how this condition is satisfied in the context of 
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We refer to Sec. 7.4.3 page 297 (Dahlquist et. al.). This section refers back to section 

3.2.1. It deals with the integration with the following form ∫
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dkkgkf . The 

requirements for using the method of repeated averaging of partial sums are  
1. g(k) is an increasing/decreasing function. 
2. Both g(k) and f(k) can be locally approximated by a polynomial 
 
The above requirements can be proved to be satisfied. However, we can not prove that 
the condition mentioned in the question is always satisfied. From our experience, if 
g(k) is increasing/decreasing monotonically and the derivative of g(k) doesn’t change 
a lot, the method works. However, near the boundary of the wave system, g(k) may 
increase/decrease very slowly during a interval from k=k1 to k=k2. In such cases, this 
method can be used from k2. 
 
We apply this method on the wave part of the Green function in which the integrand 
is clearly in the form of ))(sin()( kgkf or ))(cos()( kgkf . We don’t think this method 
can be applied to an arbitrary oscillating integrand.  
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