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Abstract

This paper is devoted to a second order wavemaker theory for a three dimensional semi in�nite basin. The solutions
to the time harmonic boundary-value problems at �rst and second order are developed for regular waves. Potential at
second order is decomposed into Stokes correction and free waves. Both components are given in a relatively simple
form including progressive as well as evanescent �rst order interactions terms. The aim of this study is to precisely
determine the amplitude of the free spurious waves in order to obtain a second order motion of the wavemaker able
to suppress free wave generation. Then a second order correction of the wavemaker motion is deduced, which cancels
the second order free waves.

Introduction

The theoretical analysis of wave generation is generally
based on the assumption of potential 
ow in semi in�-
nite basins. Most of previous works were concerned with
two dimensional wave 
umes. First the two dimensional
linear wavemaker theory was developed, and showed a
good agreement with experiments for small wavemaker
stroke. However, for larger wavemaker motions, non-
linear e�ects, including the generation of unwanted free
waves were observed. These higher order e�ects moti-
vated the development of second order theory with the
aim of modeling the generation of free waves. Hudspeth
and Sulisz [5] developed a complete second order solu-
tion for generic planar wavemakers. They noticed the
importance of �rst order evanescent modes when calcu-
lating the second order free wave amplitude. They also
showed that the time-independent second order solution
predicted exactly the mean return 
ow in a closed wave

ume. Their work was further extended to irregular
wave generation by Sch�a�er [7].
Regarding wavemaker theory in three dimensions, only
a few references are available. At �rst order, Bi�esel [1]
derived the basic snake's principle, in which the basin
is considered of in�nite extent, without sidewalls. More
sophisticated theories were further developed, see e.g.

Dalrymple [4] or Boudet and P�erois [3], in which the in-

uence of sidewalls is accounted for in order to maximise
the spatial extent of the usable zone. At second order,
Wu [9] developed a theory for directional regular waves,
also called oblique waves. Investigations showed that
free waves amplitude can be as large as Stokes bound
second order waves. His work was extended by Suh and
Dalrymple [8] to deal with a directional spectrum at �rst
order. These two studies were based on the geometrical
assumption of a basin in�nite in the direction parallel
to the wavemaker, and semi-in�nite in the direction per-
pendicular to the wavemaker. At �rst order, however, it
is well known that re
ection on sidewalls will completely

modify the wave �eld generated by the snake principle.
Li and Williams [6] developed a complete second order
theory in three dimensional basin with sidewalls. Like
Hudspeth and Sulisz did for wave 
umes, they present
both the time dependent and the independent part of
the solution at second order. Li and Williams' solution
was again established for snake principle. In the present
paper, a second order wavemaker theory is developed
in three dimensional semi in�nite basin with sidewalls.
The time dependent second order solution is formulated
for regular oblique waves. Resulting expressions for sec-
ond order free waves are arranged in such a way that any
�rst order generation technique can easily be accounted
for. The aim of this study is to precisely determine the
amplitude of the free spurious waves in order to obtain a
second order motion of the wavemaker able to suppress
free wave generation.

Theoretical development

We consider a rectangular wave basin of constant depth
h and width b (see �gure 1). The wavemaker is located
at x = 0 and the basin is semi-in�nite in the (Ox) di-
rection. The y-axis is directed along the paddle and the
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Figure 1: Basin sketch.

z-axis vertically upwards. The origin O of this (x; y; z)
Cartesian coordinates system is chosen on a sidewall at
still water level so that the two sidewalls are described



Figure 2: Analytical wave �eld, with � = 2:5, � = 20 degrees. Left: �rst + second order, right: second order only
(Dalrymple method in which Xd = 3).

by y = 0 and y = b respectively. The 
uid is considered
inviscid, incompressible; the 
ow is irrotational. The
problem is described in terms of the velocity potential �.
The classical perturbation method in combination with
Taylor expansions of the boundary conditions at the free
surface and at the wavemaker leads to a boundary-value
problem for wave contributions at the �rst and second
order in wave steepness. For simplicity, the development
will further be written in complex representation and all
quantities are nondimensionalised with respect to basin
water depth h and acceleration g due to gravity. We
are interested in the time harmonic solution when the
prescribed wavemaker motion is sinusoidal in time. All
quantities like �, � andX may be expressed as real parts
of complex values

�(x; y; z; t) = Re
�
�(x; y; z) ei!t

�
where ! is the angular frequency of the wavemaker mo-
tion.

First order solution

The �rst order potential must satisfy Laplace equation
everywhere, homogeneous Neumann conditions at the
bottom and the sidewalls, an homogeneous free surface
condition and an inhomogeneous Neuman condition at
the wavemaker. A common potential solution is the
double summation of spatial modes given by

�1 =

+1X
m=0

+1X
n=0

iamn

!
F (�m; z) cos�ny e

�kmnx (1)

F (�; z) =
ei�(z+1) + e�i�(z+1)

ei� + e�i�

where the wave numbers are de�ned by �n = n�
b with

n 2 N; the f�o = ik; �mg are the imaginary or real
roots of the dispersion relationship !2 = i�m F (�m; 0)
and �nally the kmn are given by kmn =

p
�2
m + �2n if

�2
m + �2n > 0 and kmn = i

p
j�2

m + �2nj else.
Both progressive waves and evanescent modes appear in
the potential expansion (1). The condition at the free
surface �1 = �1t for water elevation, gives for each mode

a displacement � = amn cos�ny e
�kmnx, in which kmn is

purely imaginary or positive real for progressive waves
or evanescent modes respectively. Progressive waves
will correspond to the restricted domain m = 0 and

n � E [kb=�] (where E� is the integer value) to ensure
that kmn is purely imaginary and evanescent to all oth-
ers couples of (m;n) subscripts. The amplitude amn of
each potential mode may be obtained from the boundary
condition at the wavemaker. Assuming that the position
of the wavemaker X is described by X(y; z) = f(y)g(z)
and using orthogonality of y- and z-modes, we get

amn = �
!2(ei�m + e�i�m)

kmn
Jm In

in which

Jm =

R 0

�1 g(z)
�
ei�m(z+1) + e�i�m(z+1)

�
dzR 0

�1

�
ei�m(z+1) + e�i�m(z+1)

�2
dz

(2)

and In =

R b
0
f(y) cos�ny dyR b
0 cos

2 �ny dy
(3)

This formulation is valid for all type of wavemaker and
will lead to the potential provided the double summa-
tion converges at large m and n. Expressions (2) and
(3) of Jm and In contain four integrals that can be easily
calculated from wavemaker geometry and motion. Re-
sults are widely present in literature and omitted here
for brevity.
In the method proposed by Dalrymple [4], the modal
amplitudes are derived in an inverse way from a target
potential

�(Xd; y; z) =
ia

!

cosh k(z + 1)

cosh k
e�ik(Xd cos �+y sin �)

imposed at a distance Xd from the wavemaker. Hence
we get

aon = a In e(kon��o cos �)Xd

and the wavemaker motion can be deduced from these
coeÆcients through the wavemaker condition

X1(y; z) = �g(z)

+1X
n=0

kon aon

i�o (ei�o � e�i�o) Jo
cos�ny

A detailed study of the �rst evanescent mode with m =
0 and n = N + 1 reveals that its wave number tends to
zero. Hence its characteristic vanishing length can reach
great values and the mode will be visible in all the basin.
Furthermore, this modal amplitude tends to in�nity if
the wave number goes to zero so that this mode must
not be excited by the wavemaker. The simplest solution
is to impose aon = 0 for all n > N to avoid all such
evanescent modes.



Figure 3: Time domain simulation, with � = 2:5, � = 20 degrees, t = 13T . Left: �rst + second order, right: second
order only (Dalrymple method in which Xd = 3).

Second order solution

The second order potential satis�es Laplace equation
and homogeneous Neumann conditions at the bottom
and sidewalls. The Neumann condition at the wave-
maker is inhomogeneous, as well as the free surface con-
dition. The previous �rst order solution appears in the
right hand sides of these two conditions. A convenient
way to solve these equations is to separate the second
order potential into two parts, � = �s + �f where the
�rst term is the Stokes second order correction and the
second one is the free wave part due to non linearities
induced by the wavemaker. The Stokes correction will
satisfy an inhomogeneous condition (4) at the free sur-
face and no condition at the wavemaker (this condition
will be satis�ed later by the free wave component).

2i!�e+�ez = �
1

2
2i!j

�!
��1j

2�
1

2
�1[iw�1+�1z]z for z = 0

(4)
As mentioned by Hudspeth and Sulisz [5], the right hand
side of the above equation gives both a time dependent
and a time independent solution for the potential. In
the study of progressive waves we focus our attention
on time dependent harmonic terms only. Here at sec-
ond order, those terms will oscillate at frequency 2!.
The right hand side of equation (4) contains interac-
tion terms involving wave-wave, wave-evanescent and
both evanescent-evanescent components. The expres-
sion used to describe the �rst order potential allows us
to treat all those interactions the same way. Hence, we
obtain after some tedious algebra

�s =
ia+mnpq

2!
e�(kmn+kpq)x cos(�n + �q)y F (�

+
mnpq ; z)

+
ia�mnpq

2!
e�(kmn+kpq)x cos(�n � �q)y F (�

�

mnpq ; z)

where the wave numbers are de�ned by (��mnpq)
2 =

(kmn + kpq)
2 � (�n � �q)

2 and the amplitudes

a+mnpq =
amnapq

4

6!4 + 2kmnkpq + (�+
mnpq)

2 � 2�n�q

�4!2 + i�+
mnpq

ei�
+
mnpq�e�i�

+
mnpq

ei�
+
mnpq+e�i�

+
mnpq

a�mnpq =
amnapq

4

6!4 + 2kmnkpq + (��mnpq)
2 + 2�n�q

�4!2 + i��mnpq
ei�

�

mnpq�e�i�
�

mnpq

ei�
�

mnpq+e�i�
�

mnpq

This solution is quite similar to the one of Li and Wil-
liams [6], with a correction of an apparent error in the

denominators of a+mnpq and a�mnpq.

The second potential �f must satisfy the condition

�f
x
= ��sx�X1 �1xx+X1y

�1y+X1z
�1z for x = 0 (5)

in order for the total potential to satisfy the right con-
dition at the wavemaker. Like the �rst order potential,
this second potential follows an homogeneous condition
at the free surface. It is given in a similar way as the
�rst order potential (1)

�f =

+1X
m=0

+1X
n=0

iafmn

2!
F (�m; z) cos�ny e

�
mnx (6)

where the wave numbers are de�ned by �n = n�
b with

n 2 R; the f�o = ikf ; �mg are the imaginary or real
roots of the dispersion relationship 4!2 = i�m F (�m; 0)
and �nally the 
mn are given by 
mn =

p
�2
m + �2n if

�2
m + �2n > 0, and 
mn = i

p
j�2
m + �2nj else. This po-

tential will thus in part correspond to progressive waves
called free waves, which will eventually disturb the pre-
scribed wave �eld. To annihilate these free waves, one
may try to remove them by adding a second order wave-
maker motion in phase opposition with the theoretical
free waves. In the correction of the generation process,
the �rst and most diÆcult step is to predict the free
waves amplitude. This may be done with the inhomo-
geneous condition at the wavemaker (5). After some
other tedious algebra, it comes from condition (5) at
wavemaker

afmn =
�m

mn

(ei�m + e�i�m)2

2�m + e2i�m�e�2i�m
2i

8<
:

E[n=2]X
q=0

(km0n�q + kpq)

am0n�q apq

2

"
6!4 + 2kmnkpq + (�+

mnpq)
2 � 2�n�q

(�+
m0n�q pq)

2 � �2
m

+
�m0�p + km0n�qkpq + �n�q�q

2�m0�p

4!4 + (�m0 � �p)
2

(�m0 + �p)2 � �2
m

+
�m0�p � km0n�qkpq � �n�q�q

2�m0�p

4!4 + (�m0 + �p)
2

(�m0 � �p)2 � �2
m

�

�Amn
m0p +

1

1 + Æon

+1X
q=0

(km0n+q + kpq)
am0n+q apq

2"
6!4 + 2kmnkpq + (��mnpq)

2 + 2�n�q

(��m0n+q pq)
2 � �2

m



+
�m0�p + km0n+qkpq � �n+q�q

2�m0�p

4!4 + (�m0 � �p)
2

(�m0 + �p)2 � �2
m

+
�m0�p � km0n+qkpq + �n+q�q

2�m0�p

4!4 + (�m0 + �p)
2

(�m0 � �p)2 � �2
m

��

where Amn
m0p = 0 if n is odd or the term of the �rst �nite

summation with q = n=2 if n is even. One should notice
that summation signs over m0 and p have been omitted
for brevity. It must be highlighted that this expression
for the free wave amplitude is fully independent of the
geometry of wavemaker. It means that this expression
is valid for all types of wavemaker, provided the right
�rst order amplitudes am0n�q apq are known. The cor-
responding free surface elevation may be separated in
the same way as the �rst order potential. Modes with
m = 0 and n � Nf = E [kf b=�] will represent the free
progressive waves whereas other modes will vanish far
from the wavemaker.

Validations

In two dimensions, the free wave potential given by (6)
reduces to the solution of Hudspeth and Sulisz [5]. Both
Stokes and free wave potentials match exactly their so-
lutions as the wave direction � goes to zero.
Figure 2 presents three dimensional views of a regular
wave �eld. The wave period is T = 4 and the wave direc-
tion is 20 degrees from main axis; the �rst order wave-
length is � = 2:5 and the wave steepness 2a=� = 5%.
The wave �eld is generated with the Dalrymple method
for which the target distance is Xd = 3. The left plot
shows the superposition of �rst and second order wave
�eld. As expected from Dalrymple theory, one can ob-
serve a clean wave �eld between x = 2 and x = 4. After
x = 4, waves will reach the sidewall at y = 6. Hence we
can observe a re
ection pattern in this region. The right
plot represents the second order elevation. The Stokes
correction and the free waves have been superposed for
further comparison with simulation. Separate analysis
shows that the large waves at the y = 0 wall on second
order plot are free waves. These large free waves can be
three times higher than the Stokes correction.
A nonlinear spectral model developed recently by Le
Touz�e et al. [2] has been employed to simulate three
dimensional wave generation. This model is based on
the same framework as the analytical solution presented
here, but the problem is solved in the time domain, in
a bounded basin. The boundary value problems at �rst
and second order are solved using a spectral expansion
of the potentials in series of the natural modes of the
tank. Figure 3 presents numerical results for the same
case as the previous analytical one. An absorbing zone
is implemented in the simulation to avoid re
ection on
the back wall x = 10. The in
uence of this numerical
beach is clearly visible on the two plots at x > 8 where
the free surface elevation goes rapidly to zero. Com-
parisons between the two �gures 2 and 3 shows that the
simulation correctly resolves �rst and second order prob-
lems. The spectral numerical model thus represents a

dedicated tool to investigate the range of validity of the
analytical solution to predict free waves. Preliminary
simulations in two dimension have shown the e�ective-
ness of the second order wavemaker motion correction in
suppressing free waves. Three dimensional simulations
will be performed and results will be presented at the
workshop.

Conclusion

A frequency domain second order analytical solution has
been developed for wave generation and propagation in
a three dimensional semi in�nite basin. This second
order wavemaker theory predicts unwanted free waves
amplitudes. We are willing to use these predictions in
numerical simulations in order to suppress free wave gen-
eration. Free waves predictions will also be applied to
improve the wave generation process in the new o�shore
basin of Ecole Centrale de Nantes.
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