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1 Introduction

In wave-body interaction problems encountered in
many ocean-engineering applications, an open bound-
ary that separates an area of interest from the rest of
a semi-infinite domain is often present. Because phe-
nomena of interest are usually located in the inner re-
gion near the body, it is desirable to study this inner
flow as a viscous flow while retaining the inviscid flow
assumptions in the outer region where only wave ef-
fects are likely to be important. Unfortunately, there
is no simple way to specify conditions on the viscous-
inviscid interface so that gravity waves can propagate
across the interface without reflection or attenuation.
This abstract presents recent development in the treat-
ment of this issue (Hamilton, 2002) and demonstrates
success of a novel technique.

The viscous-inviscid interface presents challenges
both mathematically and numerically. Mathemati-
cally, the field equations describing the viscous flow
in the inner region (Navier-Stokes equations) and the
inviscid flow in the outer region (Laplace equation)
are different and, in fact, have different numbers of
unknown variables in each field. Computationally, it
is typical to solve viscous-flow problems using a nu-
merical technique that discretizes the entire fluid vol-
ume, while for inviscid flows, boundary-integral equa-
tion methods which discretize only the boundary of
the flow are most popular and efficient. Utilization of
a boundary-integral equation solution of the outer flow
as a boundary condition for the inner flow presents the
inherent difficulty that the inner viscous flow requires
boundary conditions on a pointwise basis, while the
solution of the outer inviscid flow admits only a global
relation between pressure and velocity. Here the word
“global” refers to the complete elliptic interaction of
the behavior of one point with all other points on the
interface boundary. Overcoming both of these chal-
lenges is essential to matching a viscous flow problem
solved by a field-discretization method in an inner re-
gion to an inviscid flow problem solved by a boundary-
integral equation method in an outer region.

Notable previous work on this problem was done
by Campana and Iafrati (2001), who utilized the Eu-
ler equations to advance in time a velocity potential
representing the outer inviscid flow based upon the so-

lution of the interior viscous flow. This time-stepping
approach is effective for problems in which the viscous-
inviscid matching interface does not pierce the free-
surface, but was found to be unstable when surface
waves pass across the matching interface (Yeung and
Hamilton, 2002). The alternative approach presented
below proves to be stable and robust.

Numerical solution of the interior viscous flow is per-
formed here by a pseudo-spectral technique (Yeung
and Yu, 2001), which is highly efficient but requires
a geometry consisting of a vertical strut in a finite-
depth fluid. The outer, inviscid flow is solved by a
boundary-integral equation technique utilizing a free-
surface Green function and spectral basis functions on
a cylindrical surface which forms the inner boundary
of the inviscid region, and the outer boundary of the
viscous region.

2 Viscous-Inviscid Interaction

The technique of viscous–inviscid matching pursued
here is to model the physical situation of an invis-
cid fluid adjoining a viscous fluid in such a manner
that they do not mix. This leads to boundary condi-
tions to be applied at the interface. Linearization of
these conditions forms a rational basis for performing
the matching between the viscous inner flow and the
inviscid outer flow. In general, the boundary condi-
tion derivation is similar to the approach used by We-
hausen and Laitone (1960) to develop linearized fluid–
atmosphere boundary conditions which include the ef-
fects of gravity waves. To emphasize that the origins of
the matching technique lie in the modeling of a phys-
ical situation, the development is done in dimensional
variables and the results will be nondimensionalized
for numerical implementation afterwards.

Figure 1 illustrates the geometry of the wave-body
interaction problems to be investigated. Also dia-
grammed in this figure is the viscous–inviscid fluid do-
main decomposition, the viscous region near the body
is denoted R1 and the inviscid region in the far field is
region R2.

The standard derivation of the linearized boundary
conditions on a viscous fluid at the fluid-atmosphere
interface (SF ) assumes that the pressure is continuous
across the interface and that the shear stress is pro-
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Figure 1: Schematic of viscous-inviscid interaction.

portional to the surface tension. When there is zero
surface tension and a linearization is performed about
the mean water level (z = 0), these conditions result
in a kinematic condition relating the wave elevation η
to the fluid velocity vector u = (u, v, w);

w(r, θ, 0, t) =
∂η

∂t
(1)

and three equations for the dynamic boundary condi-
tion.

∂w
∂r + ∂u

∂z = 0
∂v
∂z + 1

r
∂w
∂θ = 0

P − ρgη − 2µ∂w
∂z = P̄

 at z = 0 (2)

The boundary conditions on the viscous-inviscid in-
terface (SS) are formed in a similar manner. Pressure
across this interface is assumed to be continuous and
it is also assumed that there is zero shear stress in
the viscous fluid at the interface, consistent with the
idea that the inviscid fluid presents a no-slip surface
to the viscous flow. Linearization is performed about
the cylindrical surface which marks the interior of the
inviscid region (r = ro). The kinematic condition is,

∂ζ

∂t
= u at r = ro (3)

where ζ is the radial displacement of SS and the dy-
namic boundary conditions are:

P − 2µ∂u
∂r = P̄

r ∂
∂r

(
v
r

)
+ 1

r
∂u
∂θ = 0

∂w
∂r + ∂u

∂z = 0

 at r = ro (4)

Unlike the fluid-atmosphere interface, the kinematic
condition and dynamic conditions are uncoupled, ζ
does not appear in the dynamic boundary conditions
as η does in equation (2).

3 Method of Numerical Solution
Having formulated the problems in the two domains,
we now describe how each of the sub-problems are

solved for the special case of the interaction of waves
with a vertical, circular strut. The Laplace equa-
tion describing the inviscid outer flow is solved by
a boundary-integral equation method that utilizes
a Green function which satisfies the linearized free-
surface conditions (Wehausen and Laitone, 1960). A
spectral representation of the potential on the match-
ing surface is used and the “shell-function” techniques
(Hamilton and Yeung, 2002) are used to efficiently
solve the outer, inviscid flow problem. This technique
is a “compute once, use many times” procedure, in
which all needed Green-function evaluations are per-
formed once for each outer region geometery. The re-
sults of this “investment” step are then stored and used
to provide a linear relationship between the velocity
and the velocity potential on the matching surface at
each time-step for each particular outer flow. With this
approach, the computational requirements of solving
the outer flow become insignificant compared to the
solution of the viscous interior flow.

The Navier-Stokes equations describing the vis-
cous inner flow is solved by a pseudo-spectral field-
discretization technique (Yeung and Yu, 2001). This
technique is highly accurate and efficient and the only
limitation is the requirement of axisymmetric geome-
tries. However, there is no axisymmetric require-
ment imposed on the flow field. This method requires
Dirichlet or Neumann boundary conditions on the ve-
locity and pressure fields on all boundaries of the vis-
cous fluid. As described in Yeung and Yu (2001), no-
slip or free-slip boundary conditions are applied on the
solid boundaries and linearized free-surface conditions
are applied on the fluid-atmosphere interface. On the
viscous-inviscid interface, a new numerical matching
technique described below is applied.

4 Matching of Inviscid and Viscous Fields
The goal in matching the viscous and inviscid flows
on the interfacial surface SS is to ensure that the ra-
dial velocity and pressure are continuous across the
matching boundary. The viscous region also requires



boundary conditions on the tangential velocities and
these boundary conditions are found from the dynamic
boundary conditions derived above viz. Eqn. (4).
This technique is found to produce a solution in which
the wave-slope is continuous across the viscous-inviscid
matching boundary.

In this matching technique, the coupling between
the kinematics of the flow and the dynamic boundary
conditions takes place through the solution of the in-
viscid outer flow problem. A predictor-corrector tech-
nique is implemented that can be performed in par-
allel with a similar predictor-corrector procedure for
advancing the fluid-atmosphere boundary conditions
(1) and (2).

A boundary condition for the predicted pressure
field (denoted by the overbar on the superscript) is
found by inserting quantities from the previous time-
step into the dynamic boundary condition on the
matching surface (4),

PK = PK−1
o +

2
Re

∂uK−1

∂r
at r = ro (5)

where Po is the pressure in the outer region. The
Reynolds number Re is defined by Re = UL/ν where
ν is the kinematic viscosity, L is the circular strut di-
ameter, and U is a characteristic velocity defined by

a prescribed Froude number Fr = Ũ/

√
g̃L̃. The uK

and PK field values are then found by solving the vis-
cous flow equations subject to the dynamic boundary
conditions (4).

At this stage, the shell-function solution of the outer
flow provides a new outer pressure (PK

o ), based upon
uK as a boundary condition. This solution of the in-
viscid flow equations subject to a Neumann boundary
condition is desirable to promote a stable scheme.

Boundary conditions on the pressure field for the
corrector step are computed from the predicted solu-
tion,

PK = PK
o +

2
Re

∂uK

∂r
at r = ro (6)

The pressure field and velocity field is then re-
computed everywhere by again solving the viscous flow
equations.

Finally, the outer shell-function solution is used
again to compute the final outer pressure based upon
the final radial velocities. This procedure is similar
to that used to advance the fluid-atmosphere bound-
ary condition developed by Yu (1996), but instead of
using the kinematic boundary condition on wave ele-
vation to drive the flow, the solution of the inviscid
equations of motion in the outer region performs this
role.

5 Demonstrative Results
To demonstrate the viscous-inviscid matching, only
two sets of computed results are presented, though
other scenarios were also considered in Hamilton

(2002). The first case has waves originating from the
collapse of a hump of fluid in the viscous region. The
waves, travelling outwards, pass through the viscous-
inviscid interface. Figure 2 shows the velocity and vor-
ticity distribtuion of the viscous fluid at a time-step
after the hump has collapsed and waves have travelled
out of the viscous region. To demonstrate the effective-
ness of the outer inviscid flow as a “wave absorbing”
boundary, the computations are done for two cases,
one at which the the viscous flow extends to a radius
of ro = 5 and ro = 10. The figure shows a comparison
of the two resulting flow fields, illustrating that the
presence of the outer inviscid flow changes the interior
viscous flow very little. In this compuation, the initial
wave hump had a shape described by ηo(r̄) = 0.5e−2r̄2

,
where r̄ is radius relative to a local coordiate system
centered at (x, y) = (3, 3). The Reynolds number of
the viscous flow in these computations is Re = 5, 000.

The second case presented in figure 3 shows the effec-
tiveness of the viscous-inviscid matching when waves
that originate in the exterior, inviscid region pass in-
ward through the matching shell and drive the motion
of the interior, viscous flow. Plane waves with a non-
dimensional angular frequencey of ω = 1.0 are gener-
ated by an oscillating pressure patch wave-maker (not
shown) in the inviscid region and enter the viscous re-
gion from the left in figure 3. The snapshot shown
is after the wavemaker has been operating for 6 peri-
ods and the flow has achieved a time-harmonic state.
The solution of this problem yields viscosity-modified
wave-exciting forces and moments. In the Workshop,
additional results related to time history of force and
moment of these and other problems will be shown.
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Figure 2: Comparison of velocity, the θ-component of vorticity, and wave elevation in the θ = 0 plane at non-dimensional
time 7.6 for calculations with the shell located at ro = 10 (top) and ro = 5 (bottom).
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Figure 3: Velocity and θ-component of vorticity field in the interior region due to waves generated in the outer region.
This snapshot is taken after the wavemaker has oscillated for 6.0 periods.
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Question by : H. Bingham 
 
So far you have applied linearized conditions on the free surface; how difficult will it be to 
extend the method to nonlinear waves? 
 
Author’s reply: 
Now that we have understood what are the critical variables that must be passed between the 
matching boundary and the manner in which that should be accomplished, both internal 
(viscous) flow and external (inviscid) flow can be coupled using nonlinear solution methods. 
The shell function formulation is actually used only for convenience to take advantage of the 
efficiency of linear time dependent problem, but it is not an absolute requirement in the 
proposed matching procedure. 
---------------------------------------------------------------------------------------------------------------- 
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