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Summary : Scattering of surface water waves by two thin symmetric inclined plates present in finite or
infinite depth water is investigated here assuming linear theory and hypersingular integral equation formu-
lation. The numerical results for the reflection coefficient are depicted graphically against the wave number
for different configurations of the plates. It is seen that if the depth of submergence of the mid points of
the plates below the free surface is of the order of one-tenth of the depth of the water bottom, then the
corresponding deep water results hold effectively good.

1. Introduction : Study of water wave scatter-
ing by various configurations of obstacles present in
water of finite and infinite depth is very important in
designing certain breakwaters. Parsons and Martin
[1,2] applied hypersingular integral equation formu-
lation for investigating scattering problems involving
a single thin straight or curved plate which is either
submerged or surface-piercing. Midya et al. [3] used
this method to study the problem of scattering of
water waves by a thin inclined plate in finite depth
water. Here we have investigated the effect of two
thin symmetric inclined plates on the surface waves
for two cases viz. when the plates are present in deep
water and also in finite depth water.

2. Formulation : The y-axis is taken vertically
downwards into the water in which two symmetric
plates Γ1,Γ2 of length 2b are present, inclined to the
vertical at an angle α, y-axis being the line of sym-
metry. Γ1,Γ2 are represented parametrically as

Γ1,Γ2 : x = ±(a+bt sinα), y = d−bt cosα,−1 ≤ t ≤ 1
(2.1)

with

a > b sinα, d > b cosα for deep water (DW),

2a being the distance between the mid-points of the
plates and d being the depth of the mid-points below
the free surface and

a > b sinα, d > b cosα and h > d+ b cosα

for finite depth water (FDW), h being the bottom

depth. Assuming linear theory and irrotational mo-
tion, the incident wave potential can be represented
by Re{φ0(x, y)e

−iσt} where

φ0(x, y) = 2g(y)e−il0(x−a)

with

g(y) =







e−Ky for DW
cosh k0(h− y)

cosh k0h
for FDW

and l0 = K(k0) for DW(FDW), k0 being the unique
real positive root of the transcendental equation
k tanh kh = K.

If Re{φ(x, y)e−iσt} denotes the scattered wave po-
tential then φ(x, y) satisfies

∇2φ = 0 in the fluid region, (2.2)

Kφ+ φy = 0 on y = 0, (2.3)

∂φ

∂n
= 0 on Γi(i = 1, 2),

∂

∂n
denoting the normal derivative at a point on Γi,

(2.4)

r
1/2
0 ∇φ is bounded as r0 → 0 (2.5)

where r0 is the distance from any submerged edge of
the plates,

∇φ→ 0 as y → ∞ for DW,
∂φ
∂y = 0 on y = h for FDW (2.6)

and

φ(x, y) ∼

{

φ0(x, y) +Rφ0(−x, y) as x→ ∞,
Tφ0(x, y) x→ −∞,

(2.7)
R and T are the unknown reflection and transmission
coefficients respectively to be determined.



3. Method of Solution : Due to the geometrical
symmetry of the two plates about the y-axis, φ(x, y)
can be split into its symmetric and antisymmetric
parts (w.r. to x) as given by

φ(x, y) = φs(x, y) + φa(x, y)

where

φs(−x, y) = φs(x, y) and φa(−x, y) = −φa(x, y)

so that the analysis can be restricted to the region
x ≥ 0 only.

Then φs,a(x, y) satisfy equations (2.2) to (2.6) to-
gether with

φs
x(0, y) = 0, φa(0, y) = 0,

for y ≥ 0 for DW and 0 ≤ y ≤ h for FDW.
Let the behaviours of φs,a(x, y) for large x be rep-

resented by

φs,a(x, y) → g(y)
[

e−il0(x−a) +Rs,aeil0(x−a)
]

where Rs,a are unknown constants, then Rs,a are re-
lated to R and T by

R, T =
1

2
(Rs ±Ra)e−2il0a. (2.8)

The Green’s integral theorem is applied to the func-
tions

ψs,a(x, y) = φs,a(x, y) − g(y)e−il0(x−a)

and Gs,a(x, y; ξ, η) = G(x, y; ξ, η) ± G(−x, y; ξ, η)
where for finite depth water G(x, y; ξ, η) is given by

G(x, y; ξ, η) = ln
r

r′
− 2

∫

C1

e−k(y+η)

k −K
cos k(x− ξ)dk

−2

∫

C2

e−khL(k, y)L(k, η)

k(k −K)∆(k)
cos k(x− ξ)dk, (2.9)

with
r, r′ = {(x− ξ)2 + (y ∓ η)2}1/2,

L(k, y) = k cosh ky −K sinh ky,

∆(k) = k sinh kh−K cosh kh,

and C1, C2 are along the positive real axis in the com-
plex k-plane indented below the pole at k = K for C1
and below the poles at k = K, k0 for C2.

For deep water G(x, y; ξ, η) comprises of only the
first two terms in (2.9).

This produces

φs,a(ξ, η) = 2g(η)eil0a(cos l0ξ,−i sin l0ξ)

−
1

2π

∫

Γ1

F s,a(p)
∂Gs,a

∂np
(x, y; ξ, η)dsp

where p = (x, y) ∈ Γ1, q = (ξ, η) and F s,a(p) denote
the discontinuities of φs,a across Γ1 at the point p so
that F s,a(p) vanish at the end points of Γ1.

Application of the boundary condition (2.4) leads
to the hypersingular integral equations

1

2π

∫

X
Γ1

F s,a(p)
∂2Gs,a

∂np∂nq
(x, y; ξ, η)dsp = hs,a(q), q ∈ Γ1

which after parametrisation produces

∫

X
1

−1

[

−1

(τ − t)2
+Ks,a(τ, t)

]

fs,a(t)dt = h
s,a
1 (τ),

−1 < τ < 1 (2.10)

where fs,a(t) are related to F s,a(p) and must vanish
at t = ±1 and Ks,a and h

s,a
1 are known bounded

functions.
To solve the equations (2.10) f s,a(t) are approxi-

mated as

fs,a(t) = (1 − t2)1/2
N

∑

n=0

as,a
n Un(t) (2.11)

where Un(t)’s are Chebyshev polynomials of the sec-
ond kind and as,a

n are unknown constants. Substi-
tution of (2.11) into (2.10) and collocating at N + 1
points τ = τj produces

N
∑

n=0

as,a
n As,a

n (τj) = h
s,a
1 (τj), j = 0, 1, . . . , N (2.12)

where τj = cos
(

2j+1
2N+2π

)

, j = 0, 1, . . . , N and

As,a
n (τ) = π(n+1)Un(τ)+

∫ 1

−1

(1−t2)1/2Ks,a(τ, t)Un(t)dt.

The systems of linear equations (2.12) are solved to
obtain the unknown constants as,a

n and then Rs,a are
calculated from the following formulæ:

Rs,a = ±e2il0a + 2eil0a



∫

Γ1

F s,a(p)
∂

∂np
[p(y)(i cos l0x, sin l0x)] dsp

where

p(y) =







e−Ky for DW
2 cosh k0h cosh k0(h− y)

2k0h+ sinh 2k0h
for FDW .

Ultimately R and T are found by using the relations
(2.8).

4. Numerical Results :
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Fig.1: Reflection coefficient for two vertical plates for different depths.
a/h=.3, b/h=.15, =00

d/h=.35

d/h=.55

In Figure 1, |R| is depicted for two thin vertical
plates (α = 0) submerged in finite depth water. It is
seen that the graphs of |R| are exactly similar to those
obtained by Das et al. [4] who investigated oblique
wave scattering by two vertical plates in finite depth
water by Galerkin method.

The figure 2 displays |R| for different depths of
submergence of the plates in water of uniform finite
depth h for α = 45o and a

b = 1. It is noticed that

when d
h = .1, almost all the data points for |R| for

finite depth water coincide with those for deep water,
obtained by taking a

b = 1, d
b = 1, α = 45o. However

when d
h increases |R| decreases rapidly which is quite

plausible as we are concerned with surface waves.
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Fig.2 : Reflection coefficient for different depths.
a/b=1, b/h=.1, =450

Kl

0 1 2 3

|R|

0

0.2

0.4

0.6

0.8

1

Fig.3 : Reflection coefficient for closed vertical plates.
=0, a/b=.1, l=d+b, =(d-b)/(d+b)=.01(A),.05(B),.25(C).
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The effect of two closely situated vertical plates in
deep water on |R| is manifested in figure 3. New
parameters l = d + b and µ = d−b

d+b are introduced
in order to compare the results with those obtained
by Evans [5] for a single vertical plate in deep water.
The agreement between the two results is seen to be
highly satisfactory if a

b is chosen to be 0.1.

The figure 4 depicts |R| for a wedge-shaped bar-
rier for two cases - when the vertex of the wedge
is upwards (α = −60o) and when it is downwards
(α = 60o). It is seen that the reflection coefficient
is much higher for the wedge with vertex downwards
than that for the wedge with vertex upwards for the
same depth ( d

b = 1) and separation (a
b = | sinα|) of

the mid-points of the plates.
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Fig.4 : Reflection coefficient for wedge shaped obstacle.
d/b=1, a/b=sin600

=600

=-600

Kb

0 0.5 1 1.5 2

|R|

0

0.2

0.4

0.6

0.8

1

Fig.5 : Reflection coeficient for a horizontal plate at different depths.
= /2, a/b=1, d/b=.1(A), .3(B), .5(C)
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The figure 5 shows |R| for a single horizontal plate
in deep water (α = 90o, a

b = 1) kept at different
depths below the free surface. As the depth increases
multiple reflection occurs and |R| attains the value
unity for particular wave numbers.

The behaviour of |R| is shown in figure 6 for a hor-
izontal plate with slit for different slit lengths by tak-
ing α = 90o, d

b = .3, a
b = 1.5, 1.3, 1.1. It is observed

that as the slit length increases the overall reflection
coefficient increases as a result of the increase in the
effective length of the horizontal plate.
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Fig.6 : Reflection coefficient for a horizontal plate with slit.
= /2, d/b=.3, a/b=1.5(A), 1.3(B), 1.1(C)
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5. Conclusion : The hypersingular integral equa-
tion formulation is employed to study the scatter-
ing problems involving two thin symmetric inclined
plates in finite and infinite depth water. It is ob-
served that if the plates are submerged to a depth of
order of one tenth of the depth of water they can be
considered to be submerged in deep water. Known
results for a single vertical plate in deep water and
for two vertical plates in finite-depth water are pro-
duced. New results for wedge-shaped barriers are also
established.
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Question by : J.N. Newman 
The feature in Figure 6 can be explained using the simple argument in my paper in J. Fluid 
Mechanics on long symmetric obstacles (circa 1964). 
 
Author’s reply:  
I agree with your argument. That may be the case. However I have not thought of it properly; 
I will certainly look at that point more deeply. 
 
----------------------------------------------------------------------------------------------------------------- 
 
Question by : M. Meylan 
Are the zeros in modR( R ) robust under change in symmetry of plates, etc…? 
 
Author’s reply:  
Yes, for all configurations of the plates we have got zeros for the reflection coefficient for 
some wavenumber. 
 


