
Numerical Modeling of Flow in Water Entry of a Wedge

Hajime KIHARA

National Defense Academy, Yokosuka, JAPAN

Email : hkihara@nda.ac.jp

Abstract

The water entry problems of a wedge with constant vertical velocity are studied. A boundary element method (BEM)
and a mixed Euler and Lagrangian method (MEL) are employed for the analysis of the problems. The computational
models about jet flow are proposed and these are applicable to the problems for wedges with various dead rise angles.
Computational results of the hydrodynamic pressure on wedges show good agreements with other theoretical ones.
In addition, it turned out that the singularities at a bottom vertex were apt to lose the precision of local pressure
values. Accordingly we introduce the analytical description of the flow in a local domain around the vertex. These
solutions can be determined by solving integral equations with the solutions in the other domain.

Introduction

Hydrodynamic impact analysis taking account of the

local uprise of water was initiated by Wagner. Theoret-

ical studies are extended up to the analysis including jet

flow due to the water impact these days and they are still

challenging issues. Jet generation is one of characteristic

features in water impact phenomena. A thin jet layer is

formed along the body surface in the case of water im-

pact of a wedge. The analysis by matched asymptotic

expansions was presented recently [2][5]. The BEM is

also one of numerical procedures where a jet region can

be taken into account. The time-stepping method is em-

ployed together to update moving boundaries generally.

Zhao & Faltinsen [9] introduced the so-called ”cut-off”

model of jet flow. This model provides the good pre-

diction of hydrodynamic pressure in the problems with

various dead rise angles. However, as the jet flow is

cut off at the spray root, we cannot obtain the informa-

tion, for instance, the evolution of the jet flow and the

separation from the body surface. Recently the interest-

ing method that can make up with this drawback was

presented by Iafrati [6]. The jet region is divided into

several small panels and the velocity potential on each

panel is computed by using local Taylor expansions and

matching with the other domain.

The present work is intended to develop the numer-

ical method by the BEM, which can describe the evo-

lution of the jet flow in the water entry problem of a

wedge. For this purpose, we introduce two computa-

tional models about the jet flow. One is the model to

cut off the jet flow, and the other is the model about

the convexity of the free surface shape. Particularly, the

cut-off operation is restricted only to the jet tip in order

to keep computed information. The idea may be con-

ceptually similar to the method by Fontaine & Cointe

[3], although their computational results near jet tips

are different from the present ones. As we describe how
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Fig. 1: Coordinate system.

to cut off the jet flow in the later section, we’d like to

emphasize that such a manner is arbitrary to some ex-

tent. It suggests that the exact description of the flow

is not always necessary within the jet region. The sec-

ond computational model is convenient to expose the

influence of gravity in the jet flow. These computa-

tional models enable the total simulation up to re-entry

against the underlying free surface, e.g. an early stage,

a self-similar stage, an deformation stage where gravity

effects becomes dominant and a final stage leading to a

plunging jet. Another motivation for this work is the

flow domain around the vertex of a wedge [8] and atten-

tion is necessary to deal with numerical analysis. The

presence of the singularities at the vertex also affect the

computation of the hydrodynamic pressure locally. It

turned out that the introduction of analytical forms for

the velocity potential in this local domain brought some

advantages. For instance, the computational errors in

numerical differential due to both a type of its scheme

and nodal intervals can be avoided. This is suitable to

describe the body surface boundary condition particu-

larly in the acceleration field.



Formulations of problems

The water entry problem of a symmetrical wedge

moving down with constant velocity V is considered.

The x and y axes are taken along the undisturbed free

surface and along the body centerline pointing upward,

respectively, as is shown in Fig.1. Assuming the fluid

is incompressible and the flow is irrotational, the fluid

motion is specified by the velocity potential φ. The

problem is governed by the following equations:

∇2φ = 0 in Ω (1)

∂φ

∂n
= −V ny on ΓB (2)

Dφ

Dt
=

1

2
|∇φ|2 − gy on ΓF (3)

Dx

Dt
= ∇φ on ΓF (4)

where g and x denote the acceleration of gravity and the

position vector of arbitrary point in the domain, respec-

tively, and the other symbols are defined in Fig.1. Since

the time derivative of the velocity potential is necessary

to compute the hydrodynamic pressure, the boundary

value problem about the acceleration field is also formu-

lated in the present work as follows:

∇2φt = 0 in Ω (5)

∂φt

∂n
=

∂φ

∂n

∂2φ

∂s2
− ∂φ

∂s

∂

∂s

∂φ

∂n
on ΓB (6)

φt = −1

2
|∇φ|2 − gy on ΓF . (7)

The initial conditions of the free surface are necessary

to complete the problems. The conditions are given by

φ = φt = 0 on ΓF , at t = 0 (8)

Thus the water entry problems of a wedge are formu-

lated as the initial value - boundary value problems.

Numerical procedures and results

The solution procedures of problems are based on

the MEL method. The fourth-order Runge-Kutta method

was employed as a time-marching scheme in the present

work. On the other hand, two sets of boundary value

problems in equations (1)-(4), (5)-(7) are solved using

the BEM.

Solution procedure of integral equation

Applying Green’s theorem to each boundary value

problem, the integral equation with the same form is

obtained as follows:

C(P )

{
φ(P )

φt(P )

}
+

∫
Γ

{
φ(Q)

φt(Q)

}
∂G(P, Q)

∂nQ
dΓ(Q)

=

∫
Γ

{
∂φ(Q)

∂n
φt(Q)

∂n

}
G(P, Q) dΓ(Q) (9)

where G(P, Q) is the Green function and expressed as
1
2π

ln |x(P )−x(Q)|, and C(P ) denotes the interior angle

at the observation point P .

The linear isoparametric elements are used for the

discretization of equation (9). As the analytical integra-

tion along each element is performed, accurate results

are provided even in the thin area near the jet tip. Ini-

tially we introduced a double node at the vertex, but

desirable results about hydrodynamic pressure at the

vertex could be not obtained for the presence of singu-

larities at the vertex [8]. Next, we made the computa-

tional point shifted inside by using a constant element

or a non-conformity element as the element adjacent to

the vertex. The improvement was recognized to some

extent, but these are easy to make computational errors

due to numerical differential. Therefore, to reduce such

disadvantage, the analytical expression of velocity po-

tential is adopted in the local domain around the vertex

as follows:

φ = V

M∑
m=1

am r
(m−1)π

π−α cos

{
(m − 1)(θ − α)π

π − α

}
−V r cos θ (10)

where am is a coefficient to be determined by match-

ing with the solutions in the other domain. Equation

(10) satisfies both the Laplace equation and the body

boundary condition.

When equation (9) is discretized by using (N − 1)

elements on the boundary, the simultaneous equations

on N unknowns are obtained as follows:

[Hij ] {φj} = [Gij ] {φnj} (11)

( i, j = 1, 2, · · · , N )

The discretized form of equation (10) can be written

{φk} = [Fkm] {am} + {bk} (12)

( k, m = 1, 2, · · · , M < N )

The matrix and vector of right-hand side are given by


Fkm = V rσm
k cos {σm(θ − α)} ,

bk = V rk cos θ ,

σm =
(m − 1)π

π − α
.

(13)

Let the local boundary (M nodes) locate in the first half

of the total boundary (N nodes). Substituting equation

(13) to the left-hand side of (11), the matrix form is
 Hik Hil




{
φk

φl

}

=


 H∗

im Hil




{
am

φl

}
+


 b∗i


 (14)



The new matrix and vector with ∗ can be computed by

[H∗
im] = [Hik] [Fkm] (15)

{b∗i } = [Hik] {bk} (16)

The total number of unknowns is the same as that be-

fore introducing equation (10). Therefore, using equa-

tion (14), we can solve the simultaneous equations with

unknown coefficients am matched with the velocity po-

tential φl in the remaining domain. In the present work,

the radius distance of the local domain is set to V t/2.

Since the tangential second derivative of equation (10)

is infinity at the vertex, a non-conformity element only

at that point is used together.

Computational model of jet flow

At the intersection between the body and the free

surface, a double node is placed for computation. When

the boundary value problem is solved, we can compute

the velocity for the intersection particle by taking ac-

count of not only the pressure condition but also the

kinematic condition including interactions with the body’s

motion. The adopted treatment of the intersection give

reliable computational results [7] in large amplitude os-

cillating problems. In our approach, the intersection

particle is always on the body surface if the curvature

of the body surface is zero. As is pointed out by Green-

how [4], the present computation also gives small nega-

tive pressure in jet region during the early stage of im-

pact. However, the negative pressure disappears more

and more, as the computational stage moves to the self-

similar one. We can suppose that this is partly because

the potential flow is applied to the jet region in spite of

more complex flow actually. But we cannot specify the

reason of this fact.
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Fig. 2: Cut-off model of a jet tip.

In the case of abruptly starting motion like water en-

try of a wedge, so large acceleration is induced near the

intersection and fluid particles run up along the body

surface quickly. Since the singularities on velocity are

in presence at the intersection, the numerical errors are

inherent in the computation of the intersection for short

duration after impact. Although we cannot conclude

how much affects the sequential computation, the com-

putation initiated by several different initial conditions

arrives at the same state soon. We can trace the motion

of the jet tip to some extent, but computational efforts

will be added more and more because of the increas-

ing computational domain and the numerical instabili-

ties bringing the small negative pressure. As shown in

Fig.2, the jet flow forms a thin triangle layer with an

apex at the intersection. Since the velocity potential

comes to have almost symmetry values on both bound-

aries, the flow can be considered one-dimensional to-

ward the intersection. Generally speaking, a time step

size need to be made enough small. This is helpful to

prevent the free surface in the jet region from touch-

ing with the body surface. From the above-mentioned

considerations, we introduce cut-off models to describe

the jet flow practically. The tip shape of the jet region

is controlled only by using a contact angle γ at the in-

tersection. Its conceptual illustration is shown in Fig.2,

where it is suggested that the flux is hopefully conserved

even in cutting off the jet tip. The execution of cut-off

operation is judged by

γ ≤ β0 at P2 (17)

The shadow area in Fig.3 is removed when the above

condition is violated. So the contact angle γ is always

monitored during computations. The results by Dobro-

vol’skaya [1] are adopted as the threshold angle β0 in

the present work.
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Fig. 3: Transitional phase due to gravity effects.

By the way, one of troubles in the computational

simulation is the fact that the free surface shape with

high curvature is made near the spray root, which is

the stage before the flow exhibits the features of the

self-similarity. The monotonous shape of the jet region

tends to be deformed into small waved shapes. This is

not a favorable tendency to examine the gravity effects

in the jet flow simulation, because such shapes are eas-

ily evolved to the projectile of fluid into the air. Due to
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Fig. 4: Pressure distribution ( without gravity )

the abrupt motion of a wedge into the undisturbed wa-

ter surface, the concave water surface is formed near the

spray root, which becomes more remarkable as the dead

rise angle gets small, for instance, as shown in Fig.5.

As the fluid particles need to flow along such a curve,

these normal acceleration increases locally and results

in a overshot curve. The pressure values become much

higher on the body near that area temporarily. This

moment corresponds with the occurrence of maximum

peak pressure which is observed in the pressure time his-

tories in the cases of small dead rise angles, although we

can explain that it is air cushioning effects particularly

for dead rise angles less than 10 degree. Therefore, this

computational treatment is important for the predic-

tion of the maximum peak pressure. Related with the

convexity of the free surface, the following condition is

adopted for this work.

∂2x

∂s2
≥ 0 for y≥ ypmax , δ ≤ δc (18)

where ypmax = V t(π/2 − 1) by asymptotic theory, and

δ means the thickness of the jet region and its critical

value δc is set to 1.5 l tan β0 using jet region length l.

All computations are started from the state that a

wedge is initially submerged into water slightly. The

computed pressure distribution on the wedge surface are

shown in Fig.4. The results by the present method give

good agreements with similarity solutions in the case

of neglecting the gravity term in equation (3), although

the discrepancies due to singularities at the vertex are

recognized in the case of α = 30◦. On the other hand,

including the gravity term, we can simulate the evolu-

tion of the free surface from the jet formation up to the

re-entry against the underlying free surface. Such com-

putational results in case of α = 60◦ are shown in Fig.5.
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Fig. 5: Evolution of free surface due to water entry of a

wedge with α = 60◦, V = 1.0 m/s (Lower computational

results correspond to initial 100 steps.)
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