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1 Introduction

The bathtub vortex is a famous phenomenon. The experiments by Shapiro
(1962) and Trefethen et al. (1965) indicate that the circulation of a bathtub
vortex may possibly be governed by the rotation of the Earth. This is only
true if the tank is wide enough, the draining is slow enough and the water in
the tank has settled for many hours. An attempt at explaining theoretically
the in�uence of the Earth's rotation was presented by Marris (1967). Here
the free surface was assumed �at, and a simpli�ed �ow �eld was considered.
This lead to a somewhat unrealistic exponential growth of the vorticity. Lord
Kelvin's circulation theorem for axisymmetric inviscid �ow in an inertial sys-
tem gives (d/dt)(cd2) = 0. Here t is time, c is the vorticity and d is the
diameter of a material circle of �uid particles. This formula can be applied
directly to Shapiro's experiments. It gives a reasonable estimate of 1 cm for
the diameter of the circular particle paths near the sink, provided the �ow
is due to the rotation of the Earth. Lundgren (1985) presented a consis-
tent model where the free-surface deformation was taken into account. He
considered �uid in a container with rapid rotation (small Rossby number).
Our present theoretical approach corresponds to the inviscid model of Lund-
gren (1985), but covers a di�erent parameter regime: We assume a rapid
impulsive start of the bottom drain, instead of the gradual �ow development
assumed by Lundgren. Moreover, we assume a slow container rotation (high
Rossby number), so that our theory can be compared with a bathtub rotat-
ing with the rotating Earth. We will show that the vorticity ampli�cation in
an impulsive bathtub vortex is far too small to have anything to do with the
rotation of the Earth.



2 Analysis

We consider inviscid �ow of a homogeneous and incompressible �uid of den-
sity ρ. The �uid is con�ned in a wide container. The gravitational acceler-
ation is g. At time t < 0 there is a steady rotation with angular velocity
Ω. The origin is placed in the surface midpoint. We introduce cylindrical
coordinates (r, θ, z), with the associated velocity components (vr, vθ, w), re-
spectively. The bottom of the container is given by z = −D. We are going
to study the swirling dip formation due to a point sink impulsively started
in the midpoint of the container bottom. The impulsive point sink has a
constant volume �ux Q. We de�ne the Froude number F and the Rossby
number ε−1, respectively, as follows
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The units of dimensionless length, time, velocity and pressure are D, D3/Q,
Q/D2 and ρgD, respectively. The dimensionless components of the Euler
equation of motion in the radial and azimuthal directions are (Lundgren
1985):
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The remaining governing equations are the same as in the corresponding
irrotational problem (Haugen and Tyvand 2003). The �ow �eld is described
in terms of a small-time expansion:

v = εriθ +H(t)(v0 + tv1 + t2v2 + ...). (4)

The �rst term is the steady rigid-body rotation. H(t) is the Heaviside unit
step function. We will assume a �at initial surface, which implies the condi-
tion ε � 0.03/F . The �ow during dip formation is consistently split into a
potential �ow (Haugen and Tyvand 2003) and an azimuthal �ow expressed
as

vθ(r, z, t) = εr +H(t)(tv1θ + t2v2θ + t3v3θ + ...). (5)

This azimuthal �ow at the surface will be evaluated to third order:
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This azimuthal surface �ow grows rapidly, as a cubic function of time
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This gives the vertical component of the surface vorticity
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This vorticity is evaluated at the central surface point above the sink

c|(r,z)=(0,η) = ε(2 +H(t)t3(0.00398687F−2 − 0.0807627)). (9)

Let us now neglect the rotational in�uence on the surface dip (assuming ε
small). Then we can apply the result from (Haugen and Tyvand 2003, eq.
73) valid at the threshold of dip formation: F = 0.10944. This critical dip
reaches the bottom sink at dimensionless time t = tc = 3.67. Just at this
moment when the surface is being swallowed by the sink, we have

c|(r,z)=(0,−1) = 2ε(1 + 6.2312) (10)

where η(0, tc) = −1 by de�nition. The �rst term in the parenthesis of eq. (10)
represents rigid-body rotation. The rigid-body vorticity is thus magni�ed by
a factor 7.2312 as the critical rotating dip reaches the bottom sink. We
will later modify this result for the surface vorticity by taking into account
the e�ect of rotation on the critical Froude number. Note that the present
theory does not say anything about the �ow after the free-surface dip has
been swallowed into the sink. The dominating pressure deviation at the free
surface can be integrated up to give
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We can now extend the formula given by Haugen and Tyvand (2003, eq. 38)
for the total third-order elevation, to account for rotation

η3 = η3S + η3G + η3C +
2

3
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Thereby we can modify the result from Haugen and Tyvand (2003, eq. 73)
for the total third-order elevation above the impulsive bottom sink
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Here G = 0.915965594.. is Catalan's constant.



3 Concluding remarks

We have shown that the bathtub vortex starting impulsively leads to an
ampli�cation of the initial vorticity by a factor of seven compared with a
weak initial rigid-body rotation (large Rossby number). This demonstrates
that an impulsive bathtub vortex can never be caused by the Earth's rotation,
as this would require an ampli�cation of order 104 or more (Shapiro 1962).
An impulsive �ow has too strong vertical component and cannot shrink the
material circles su�ciently on their way into the sink during dip formation.
The present work is an extension of the model by Haugen and Tyvand (2003),
to include rotational azimuthal �ow. Our previous paper investigated the
nonlinear time-dependent free-surface �ow due to an impulsive point sink
at the bottom of a �uid layer. The same problem in two dimensions had
been investigated by Landrini and Tyvand (2001). Earlier papers by Tyvand
(1992) and Miloh and Tyvand (1993) analyzed the time-dependent nonlinear
free-surface �ows due to a submerged impulsive line sink and point sink with
in�nite depth.
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