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1 Introduction

The assessment of the behaviour of Floating Produc-
tion and Storage units Offshore (FPSO’s) in survival
wave conditions could benefit considerably from the
application of fully non-linear potential theory calcu-
lations.

In an earlier study we calculated the diffraction of
moderate to high non-linear water waves by verti-
cal cylinders [1] to get a first idea of the computa-
tional difficulties involved. Further confidence in our
method was obtained by comparing to more detailed
experiments, see [2]. Now we include a freely floating
body in our diffraction calculations. Berkvens [3] al-
ready included the algorithm for solving the equations
of motions for a floating body in our method, but he
did not do any diffraction calculations.

In this paper we show the results of a comparison
with linear diffraction theory for the case of a sphere
floating in regular waves. We compare with results
from Pinkster [7]: the RAO’s (Response Amplitude
Operators) for surge and heave, and the horizontal
drift force in regular waves. The latter is a second
order quantity that only depends on first order quan-
tities.

2 Set-up of the computations

For this comparison we need to do calculations for a
range of frequencies. The interesting range of wave
numbers goes from ka = 0.4 up till ka = 1.5, where a
is the radius of the sphere and k is the wave number of
the incoming wave. To start with, we take a domain
with a radius of 64 metres and a sphere with a radius
of 8 metres. For ka = 0.4 we then have a wavelength
of 128 metres (cf. [1]). Since we have a limited reso-
lution, 80 panels in the circumference of the domain,
it is necessary to use a larger sphere with a radius
of 12 metres for the higher ka values. For ka = 1.0
both spheres have been used for comparison. The
wave height of the incoming waves is 0.50 metres. To
get an idea of the possible nonlinearities, three extra
wave heights have been calculated for ka = 1.0 and
ka = 1.1: 0.25 m, 1.00 m, and 2.00 m. The smallest
wave height has a steepness H/λ of 0.003, the largest

wave height has a steepness of 0.04.
The calculations are done with our fully non-linear

potential theory code HYPAN, which is based on a
higher order panel method as described in e.g. Broeze
[4] or de Haas et al. [5]. For the floating body algo-
rithm see Berkvens [3], Ballast [2], or Tanizawa [9]. A
circular domain is used. On the outer boundary we
prescribe a Rienecker & Fenton [8] type of solution for
a regular wave of finite amplitude. A Sommerfeld ra-
diation condition is used on the difference of the total
solution with the prescribed incoming wave:

φt = φt,RF − c((φn − φn,RF ) + (φ − φRF )/2r) (1)

where the subscripts t and n denote partial differenti-
ation and RF denotes the prescribed incoming wave.
The phase velocity of the incoming wave is denoted
by c and the horizontal radius by r. In front of this
Sommerfeld radiation condition a pressure damping
zone is implemented, also working on the difference
with the incoming wave:

pdamp = b · (r − r0) · (φn − φRF
n ) (2)

with r the horizontal radius and b a constant.
The calculations are started with the Rienecker &

Fenton type of solution prescribed on the entire sur-
face, including the sphere. In one or two periods the
sphere then changes smoothly to an impermeable one,
see Ferrant [6]. During this startup phase the posi-
tion of the sphere is kept fixed, but when the normal
velocity on the boundary of the sphere has become
zero, the sphere is set free.

Different from the work of Ferrant cited above, we
do solve the entire solution explicitly instead of only
the diffraction field (using the known Rienecker &
Fenton solution) and we do not use frozen coefficients
in our RK4 time stepping. The grid points on the
sphere move along meridians on the sphere, with the
pole at the top. Far away from the sphere the grid
points are free to move in the vertical direction only.
In between they do a little bit of both. The drift forces
on the sphere are compensated for by a soft spring
mooring. For the entire computations no smoothing
techniques were employed.

The calculations used 80 panels in the circular di-
rection and 7000 panels in total. The calculation of



one time step takes about 1500 seconds on one MIPS
R14000 processor running at 500MHz; we used 16 or
32 of them on a SGI Origin 3800.

3 Results

First we have a look at the RAO’s. For the surge mo-
tion the deviation with respect to the linear theory
is around 1% and at most 2% for the amplitude, and
around 1% for the phase. These results are not shown.
For the heave motion the results are shown in figures 1
and 2. The deviations from the linear theory range
from 2 till 9% for the amplitude. At heave resonance
one can see from the difference between the small and
the large sphere, that a large part of these deviations
can be attributed to the limited size of the computa-
tional domain and thus to the limited distance from
the sphere to the numerical beach. The calculation
with the small sphere has a deviation from the linear
results of around 2%, whereas the calculations with
the larger sphere have a deviation from the linear re-
sults of 9% for the small wave heights. For the phase
of the heave motion, the deviations from the linear
theory are around 1% for the small wave heights. The
largest wave heights show a clearly non-linear behav-
iour with their deviation from linear theory of 3 or
4%. For both heave and surge motions the small dif-
ferences between the small wave heights at ka = 1.0
and ka = 1.1 suggest that for these wave steepnesses
we are still in the linear regime.

The results for the horizontal drift force are shown
in figure 3. Here there are deviations from the linear
theory of up to 20%. In the linear diffraction theory
the total drift force is the sum of several components,
each depending on first order quantities only. To get
a better idea of where the deviations come from, we
also tried to calculate some of the components of the
horizontal drift force separately. Of course, in a fully
non-linear diffraction program not all of these compo-
nents are readily available. The second component,
see equation (4), can be obtained quite easily. See
figure 4(b). The agreement with the linear diffrac-
tion theory is comparable to the agreement seen for
the first order motions. This is a good indication of
the accuracy of the code. The first component, see
equation (3), can be calculated indirectly by using
the relative wave heights on the sphere. Indirectly,
because this is not the way the pressure is calculated
in the code. See figure 4(a). Again the agreement is
comparable to that what is seen for the first order mo-
tions. This is a good indication of the quality of the
wave field obtained by the code. Combining the re-
sults for these two components, we can conclude that
the deviations of the first order quantities from the
linear diffraction theory can not explain the underes-
timation of the horizontal drift force.

4 Conclusion

We can do long stable computations in mild regu-
lar waves. The first order motions of the floating
sphere show good agreement with linear diffraction
theory, although for a more detailed comparison a
larger computational domain with a larger numerical
beach would be necessary. The horizontal drift force
is underestimated by almost 20%. Looking at the rel-
ative wave height term of that drift force shows that
this difference cannot be attributed to deviations in
the calculated wave heights around the sphere. Also
the velocity squared term of the horizontal drift force
shows a much better agreement then the total drift
force does. This needs some further investigation.
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Appendix: Components of the

mean horizontal drift force

From Pinkster [7] we have the following expressions
for the contributions to the mean horizontal drift force
for a sphere submerged down to its middle. These ex-
pressions depend only on the mean first order quanti-
ties and are accurate up to second order. The super-
script (1) denotes first order quantities, ζr is the rel-
ative wave height with respect to the centre of mass
of the sphere, S0 is the mean wetted surface, and ~X
is the displacement vector from the equilibrium posi-
tion.

F mean
I =

∮

mean WL

1

2
ρg(ζ(1)

r )2 (n̂ · k̂) dlmean (3)

F mean
II =

∫∫

S0

−
1

2
ρ(∇φ(1))2 (n̂ · k̂) dSmean (4)

F mean
III =

∫∫

S0

−ρ( ~X(1)
· ~∇φ

(1)
t ) (n̂ · k̂) dSmean (5)

~k is the wave vector of the incoming wave, thus (n̂ ·

k̂) has the opposite sign as the longitudinal direction
cosine used by Pinkster, resulting in the same overall
sign convention.
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Figure 1: Heave amplitude: from linear diffraction
(line) and from HYPAN (circles)
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Figure 2: Heave phase: from linear diffraction (line)
and from HYPAN (circles)
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Figure 3: Horizontal drift: from linear diffraction
(line) and from HYPAN (circles)
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Figure 4: Comparing the results from linear diffraction theory and the results from HYPAN for two of the terms
that make up the ‘linear’ horizontal drift force (eqns. (3) and (4))




